\(>Codeforces\space980 D. Perfect Groups<\)

题目大意 : 设 \(F(S)\) 表示在集合\(S\)中把元素划分成若干组,使得每组内元素两两相乘的结果的都是完全平方数的最小组数

对于长度为\(n\)的序列 \(A\) ,对于每一个 \(k \, (1 \leq k \leq n)\) ,分别求出在\(A\)的所有子串中有多少 \([l, r]\) 满足 \(F(A[l, r]) = k\)

$n \leq 5000, \space |A_{i}| \leq 10^9 $

解题思路 :

先考虑如何求出 \(F(S)\) ,发现对于一个满足要求的组,对组内元素分解质因数后,每一个质因子出现次数的奇偶性相同

证明: 如果两数相乘是平方数,设这个数为 \(p_{1}^{k1} \times p_{2}^{k2} \times..\times p_{n} ^{kn} (p \ is \ prime)\),必然对于所有 \(k\) ,满足\(k \equiv 0 \pmod {2}\)

又因为当且仅当奇偶性相同的两个数相加才能变成偶数,所以对于组内的每一个数分解质因数后质因子出现次数的奇偶性相同

观察发现,出现次数为偶数的质因子出现与否并不影响答案,所以可以直接消去,对于所有出现次数为奇数的质因子,也只需要保留一个即可,这样做等价于将数中的所有平方因子全部消去

将问题回到序列上,发现消去平方因子后如果两个数 \(a,b\) 能分到一组,当且仅当 \(a = b\) ,问题就转变为区间不同的数的个数,直接暴力统计即可,注意特判 \(0\) 可以放到任意组。

/*program by mangoyang*/
#include<bits/stdc++.h>
#define inf (0x7f7f7f7f)
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
typedef long long ll;
using namespace std;
template <class T>
inline void read(T &x){
int f = 0, ch = 0; x = 0;
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = 1;
for(; isdigit(ch); ch = getchar()) x = x * 10 + ch - 48;
if(f) x = -x;
}
#define N (100005)
#define int ll
struct Point{ int x, id; } e[N];
int a[N], buf[N], Ans[N], n, col, f0;
inline bool cmp(Point A, Point B){ return A.x < B.x; }
inline int change(int x){
int res = x;
for(int i = 2; i * i <= abs(x); i++)
while(res % (i * i) == 0) res /= i * i;
return res;
}
main(){
read(n);
for(int i = 1; i <= n; i++) read(a[i]), a[i] = change(a[i]);
for(int i = 1; i <= n; i++) e[i].x = a[i], e[i].id = i;
sort(e + 1, e + n + 1, cmp);
a[e[1].id] = ++col; if(e[1].x == 0) f0 = 1;
for(int i = 2; i <= n; a[e[i++].id] = col){
if(e[i].x > e[i-1].x) col++;
if(e[i].x == 0) f0 = col;
}
for(int i = 1; i <= n; i++){
int res = 0;
for(int j = i; j <= n; j++){
if(!buf[a[j]] && a[j] != f0) res++;
buf[a[j]]++;
if(!res) Ans[1]++; else Ans[res]++;
}
for(int j = i; j <= n; j++) buf[a[j]]--;
}
for(int i = 1; i <= n; i++) cout << Ans[i] << " ";
return 0;
}

Codeforces 980 D. Perfect Groups的更多相关文章

  1. [codeforces 317]A. Perfect Pair

    [codeforces 317]A. Perfect Pair 试题描述 Let us call a pair of integer numbers m-perfect, if at least on ...

  2. CF 980D Perfect Groups(数论)

    CF 980D Perfect Groups(数论) 一个数组a的子序列划分仅当这样是合法的:每个划分中的任意两个数乘积是完全平方数.定义a的权值为a的最小子序列划分个数.现在给出一个数组b,问权值为 ...

  3. Codeforces 980D Perfect Groups 计数

    原文链接https://www.cnblogs.com/zhouzhendong/p/9074164.html 题目传送门 - Codeforces 980D 题意 $\rm Codeforces$ ...

  4. codeforces 980D Perfect Groups

    题意: 有这样一个问题,给出一个数组,把里面的数字分组,使得每一个组里面的数两两相乘都是完全平方数. 问最少可以分成的组数k是多少. 现在一个人有一个数组,他想知道这个数组的连续子数组中,使得上面的问 ...

  5. Perfect Groups CodeForces - 980D

    链接 题目大意: 定义一个问题: 求集合$S$的最小划分数,使得每个划分内任意两个元素积均为完全平方数. 给定$n$元素序列$a$, 对$a$的所有子区间, 求出上述问题的结果, 最后要求输出所有结果 ...

  6. Codeforces 980 E. The Number Games

    \(>Codeforces \space 980 E. The Number Games<\) 题目大意 : 有一棵点数为 \(n\) 的数,第 \(i\) 个点的点权是 \(2^i\) ...

  7. Codeforces 923 C. Perfect Security

    http://codeforces.com/contest/923/problem/C Trie树 #include<cstdio> #include<iostream> us ...

  8. Codeforces 919 B. Perfect Number

      B. Perfect Number   time limit per test 2 seconds memory limit per test 256 megabytes input standa ...

  9. Codeforces980 D. Perfect Groups

    传送门:>Here< 题目大意:先抛出了一个问题——“已知一个序列,将此序列中的元素划分成几组(不需要连续)使得每一组中的任意两个数的乘积都是完全平方数.特殊的,一个数可以为一组.先要求最 ...

随机推荐

  1. C语言实现栈(顺序存储方式)

    #include <stdio.h> #include <stdlib.h> //提供malloc()原型 #include <stdbool.h> //提供tru ...

  2. Sublime之插件的安装(一)

    由于最近刚换了一个工作,所以决定重新申请一个blog,把工作当中遇到的一些问题记录下来,方便自己下次忘记,也希望能与一起需要的小伙伴一起共勉. 如果有不同的观点或者是不同的看法,大家都可以畅谈,我一直 ...

  3. TypeScript在node项目中的实践

    TypeScript在node项目中的实践 TypeScript可以理解为是JavaScript的一个超集,也就是说涵盖了所有JavaScript的功能,并在之上有着自己独特的语法.最近的一个新项目开 ...

  4. python作业购物车(第二周)

    一.作业需求: 1.启动程序后,输入用户名密码后,如果是第一次登录,让用户输入工资,然后打印商品列表 2.允许用户根据商品编号购买商品 3.用户选择商品后,检测余额是否够,够就直接扣款,不够就提醒 4 ...

  5. 简谈CSS 中的 em,rem,px,%

    在实际工作中,可能我们用的比较多的是‘%’ 和 px,但是我们也经常看到很多网站和css框架里用的是em 或rem.而‘%’ 和px已经都是比较常见或者说是常用.但是em 和rem 却鲜有使用,一直以 ...

  6. 【zTree】zTree展开树节点

    今天在做zTree树的时候想着将第一级tree展开,于是利用下面方法: /** * 展开树节点的第一层 */ function openFirstTreenode(){ // 获取树对象 var tr ...

  7. You can fail at what you don't want, so you might as well take a chance on doing what you love.

    You can fail at what you don't want, so you might as well take a chance on doing what you love. 做不想做 ...

  8. java处理金证中登查询图片二进制流问题

    package com.szkingdom.kess.model; import java.io.File; import java.io.FileOutputStream; import java. ...

  9. python从2.6.x升级到2.7.x

    [前提] 今日是20171207,目前Linux发行版默认安装的Python版本都是2.6.x,但是这个版本Python已经不再进行维护了. 所以需要将Python做一个升级,到2.7.x [注意] ...

  10. highcharts自定义导出文件格式(csv) highcharts的一些使用心得

    highcharts是国外的一个图表插件,包括各种数据图形展示,柱形图,线性图等等,是手机端和pc端最好的图表插件之一,相比于百度的echarts更加轻便和易懂.链接http://www.hchart ...