Description

来越多,因此选择最佳路径是很现实的问题。城市的道路是双向的,每条道路有固定的旅行时间以及需要支付的费用。路径由连续的道路组成。总时间是各条道路旅行时间的和,总费用是各条道路所支付费用的总和。同样的出发地和目的地,如果路径A比路径B所需时间少且费用低,那么我们说路径A比路径B好。对于某条路径,如果没有其他路径比它好,那么该路径被称为最优双调路径。这样的路径可能不止一条,或者说根本不存在。 给出城市交通网的描述信息,起始点和终点城市,求最优双条路径的条数。城市不超过100个,边数不超过300,每条边上的费用和时间都不超过100。

Input

第一行给出有多少个点,多少条边,开始点及结束点. 下面的数据用于描述这个地图

Output

有多少条最优双调路径

Sample Input

4 5 1 4
2 1 2 1
3 4 3 1
2 3 1 2
3 1 1 4
2 4 2 4

Sample Output

2

HINT

这道题的题面描述有些问题。

只要一条路没有其他路时间比他短并且花费比他少,那么它就是最优双调路径。

我们令dis[i][j]表示走到i点,话费了j元的最小时间(其实你也可以反过来,走到i点,花了j时间的最小话费)

可以得到dis[to][j+v[i]]=max(dis[to][j+v[i]],dis[i][j]+t[i]);

代码如下,细节比较少,很好写。

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <queue>
#include <stack>
#include <vector>
using namespace std;
#define MAXN 100010
#define INF 2139062143
#define MOD 10000007
#define LL long long
#define in(a) a=read()
#define REP(i,k,n) for(int i=k;i<=n;i++)
#define DREP(i,k,n) for(int i=k;i>=n;i--)
#define cl(a) memset(a,0,sizeof(a))
inline int read(){
int x=,f=;char ch=getchar();
for(;!isdigit(ch);ch=getchar()) if(ch=='-') f=-;
for(;isdigit(ch);ch=getchar()) x=x*+ch-'';
return x*f;
}
inline void out(int x){
if(x<) putchar('-'),x=-x;
if(x>) out(x/);
putchar(x%+'');
}
queue <pair<int,int> > Q;
int n,m,sta,des,ans=,minn=INF;
int dis[][*],vis[][*];
int total=,head[],to[],nxt[],t[],v[];
inline void adl(int a,int b,int c,int d){
total++;
to[total]=b;
v[total]=c;
t[total]=d;
nxt[total]=head[a];
head[a]=total;
return ;
}
inline void SPFA(int s){
memset(dis,,sizeof(dis));
dis[s][]=;
vis[s][]=;
Q.push(make_pair(s,));
while(!Q.empty()){
pair<int,int> k=Q.front();
Q.pop();
int u=k.first,w=k.second;
vis[u][w]=;
for(int e=head[u];e;e=nxt[e]){
int nw=w+v[e];
if(nw<= && dis[to[e]][nw]>dis[u][w]+t[e]){
dis[to[e]][nw]=dis[u][w]+t[e];
if(!vis[to[e]][nw]){
vis[to[e]][nw]=;
Q.push(make_pair(to[e],nw));
}
}
}
}
return ;
}
int main(){
int a,b,c,d;
in(n);in(m);in(sta);in(des);
REP(i,,m){
in(a);in(b);in(c);in(d);
adl(a,b,c,d);
adl(b,a,c,d);
}
SPFA(sta);
REP(i,,)
if(dis[des][i]<minn){
minn=dis[des][i];
ans++;
}
out(ans);
return ;
}

bzoj1375 双调路径的更多相关文章

  1. Bicriterial routing 双调路径 HYSBZ - 1375(分层最短路)

    Description 来越多,因此选择最佳路径是很现实的问题.城市的道路是双向的,每条道路有固定的旅行时间以及需要支付的费用.路径由连续的道路组成.总时间是各条道路旅行时间的和,总费用是各条道路所支 ...

  2. 题解 P5530 [BalticOI 2002]双调路径

    P5530 [BalticOI 2002]双调路径 输入样例: 4 5 1 4 2 1 2 1 3 4 3 1 2 3 1 2 3 1 1 4 2 4 2 4 样例如下图 样例说明: 从1到4有4条路 ...

  3. P5530 [BOI 2002]双调路径

    题意描述 [BOI 2002]双调路径 题意描述的确实不是很清楚(出题人惜字如金). 给定一张有 \(n\) 个点,\(m\) 条边的无向图,每条边有两个权值,分别表示经过这个点的代价和时间. 同时给 ...

  4. [bzoj1375] [Baltic2002] Bicriterial routing 双调路径

    Description 如今的道路收费发展很快.道路的密度越来越大,因此选择最佳路径是很现实的问题.城市的道路是双向的,每条道路有固定的旅行时间以及需要支付的费用. 路径是连续经过的道路组成的.总时间 ...

  5. 8.2/baltic神(水)题

    summary:10 bzoj1334: Description N个政党要组成一个联合内阁,每个党都有自己的席位数. 现在希望你找出一种方案,你选中的党的席位数要大于总数的一半,并且联合内阁的席位数 ...

  6. POJ 2677 Tour

    题意:双调欧几里得旅行商问题.算法导论15-1题,从最左边的点严格从左走到右再从右走到左回到起点,所有点都要走且只走一次,求最短路径. 解法:定义dp[i][j]表示从i走到j的双调路径,分为两种情况 ...

  7. loj题目总览

    --DavidJing提供技术支持 现将今年7月份之前必须刷完的题目列举 完成度[23/34] [178/250] 第 1 章 贪心算法 √ [11/11] #10000 「一本通 1.1 例 1」活 ...

  8. 【正睿oi省选十连测】第一场

    四小时写了两个暴力??自闭 [原来这就是神仙们的分量Orz rank 56/75 可以说是无比垃圾了 下周目标:进步十名?[大雾 T1 题意:有n个点的图 点有点权Ai 也有点权Bi = A_1 + ...

  9. 2019寒假练题计划——LibreOJ刷题计划 &《信息学奥赛一本通》提高版题目

    目录 2019.1.27 #10082. 「一本通 3.3 例 1」Word Rings 题意 思路 #10083. 「一本通 3.3 例 2」双调路径 题意 思路 #10084. 「一本通 3.3 ...

随机推荐

  1. oracle01--单表查询

    1. 基本(基础)查询 1.1. 基本查询语法 基本查询是指最基本的select语句. [语法] [知识点]如何使用工具进行查询 在plsql developer中打开查询窗口(执行sql语句): 执 ...

  2. Django【进阶】modelform

    modelform:models+form   建议尽量用Djangoform,更灵活,但也有人用modelform,写起来很简单 缺点,在models里面,表模型必须有__str__()方法 可添加 ...

  3. 152.Maximum Product Subarray---dp---连续子数组的最大乘积---《编程之美》2.13子数组的最大乘积

    题目链接:https://leetcode.com/problems/maximum-product-subarray/description/ 题目大意:给出一串数组,找出连续子数组中乘积最大的子数 ...

  4. fullpage.js 具体使用方法

    1.fullpage.js  下载地址 https://github.com/alvarotrigo/fullPage.js 2.fullPage.js 是一个基于 jQuery 的插件,它能够很方便 ...

  5. 到底什么是Upnp?[转载]

    本文出自:http://www.cnblogs.com/nehu/archive/2006/05/13/399342.html 解释一. 准确地说,UPnP(Universal Plug and Pl ...

  6. ASP.NET Core 2.0 MVC 发布部署--------- linux安装.NET CORE SDK具体操作链接以及操作总细节

    具体链接:https://www.microsoft.com/net/learn/get-started/linuxubuntu 如下图:

  7. web2.0 HW3 相关阅读材料

    W3C官网的材料简直看花眼……除了挂出的文档,www-style@w3.org的一堆邮件也藏着很多宝,但是看下来又眼花了……(好在宝们基本都被W3C吸收了=.=) 主要来自W3C的官网w3.org的一 ...

  8. Scrapy 增加随机请求头 user_agent

    原文: 为什么要增加随机请求头:更好地伪装浏览器,防止被 Ban. 如何在每次请求时,更换不同的 user_agent,Scrapy 使用 Middleware 即可 Spider 中间件 (Midd ...

  9. 搭建简单的CGI应用程序

    原文来源于<核心编程3>第10章web编程 一.静态文件+脚本文件 1.首先开启cgiweb服务器 python2 -m CGIHTTPServer 8000 看到如下反应 2.服务器目录 ...

  10. 借助Visual Studio Code提高基于ActionScript的LayaAir HTML5游戏的调试效率

    借助Visual Studio Code提高基于ActionScript的LayaAir HTML5游戏的调试效率 使用Visual Studio Code(VS Code)调试的优势 借助VS Co ...