Description

求关于x y的二次不定方程的解 x2-ny2=1

Input

多组输入数据,先输入组数T 然后输入正整数n(n<=100)

Output

对于每组数据输出一行,求y<=10000的最小正整数解 ,输出y的值,如果在此范围内没有解则输出No

Sample Input

1
73

Sample Output

No
#include <stdio.h>
#include <math.h>
int main()
{
int t,n;
int i,j;
int a,b; while(scanf("%d",&t)!=EOF)
{
while(t--)
{
int flag=;
scanf("%d",&n);
for(i=;i<=;i++)
{
if((int)sqrt(i*i*n+)*(int)sqrt(i*i*n+)==n*i*i+)
{
printf("%d\n",i);
flag=;
break;
}
}
if(flag==)
{
printf("No\n");
}
}
}
return ;
}

Problem G: 深入浅出学算法008-求佩尔方程的解的更多相关文章

  1. Problem E: 深入浅出学算法019-求n的阶乘

    Problem E: 深入浅出学算法019-求n的阶乘 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 5077  Solved: 3148 Descrip ...

  2. Problem F: 深入浅出学算法007-统计求和

    Description 求含有数字a且不能被a整除的4位整数的个数,并求这些整数的和 Input 多组测试数据,先输入整数T表示组数然后每组输入1个整数a(1<=a<=9) Output ...

  3. Problem E: 深入浅出学算法006-求不定方程的所有解

    Description 现有一方程ax+by=c,其中系数a.b.c均为整数,求符合条件的所有正整数解,要求按x由小到大排列,其中a b c 均为不大于1000的正整数 Input 多组测试数据,第一 ...

  4. Problem C: 深入浅出学算法004-求多个数的最小公倍数

    Description 求n个整数的最小公倍数 Input 多组测试数据,先输入整数T表示组数 然后每行先输入1个整数n,后面输入n个整数k1 k2...kn Output 求k1 k2 ...kn的 ...

  5. Problem B: 深入浅出学算法003-计算复杂度

    Description 算法复杂度一般分为:时间复杂度.空间复杂度.编程复杂度. 这三个复杂度本身是矛盾体,不能一味地追求降低某一复杂度,否则会带来其他复杂度的增加.在权衡各方面的情况下,降低时间复杂 ...

  6. Problem D: 深入浅出学算法005-数7

    Description 逢年过节,三五好友,相约小聚,酒过三旬,围桌数七. “数七”是一个酒桌上玩的小游戏.就是按照顺序,某人报一个10以下的数字,然后后面的人依次在原来的数字上加1,并喊出来,当然如 ...

  7. Problem H: 深入浅出学算法009-韩信点兵

    Description 秦朝末年,楚汉相争.有一次,韩信将1500名将士与楚王大将李锋交战.苦战一场,楚军不敌,败退回营,汉军也死伤四五百人,于是,韩信整顿兵马也返回大本营.当行至一山坡,忽有后军来报 ...

  8. Problem A: 深入浅出学算法002-n个1

    Description 由n个1组成的整数能被K(K<10000)整除,n至少为多少? Input 多组测试数据,第一行输入整数T,表示组数 然后是T行,每行输入1个整数代表K Output 对 ...

  9. Problem A: 深入浅出学算法022-汉诺塔问题II

    #include<stdio.h> void hanio(int n,char a,char b,char c) { ) printf("%c->%c\n",a, ...

随机推荐

  1. Tornado/Python 学习笔记(一)

    1.源代码下载及安装:http://www.tornadoweb.org/en/stable/ 2.python中xmlrpc库官方文档:https://docs.python.org/3/libra ...

  2. Angular 2.0 基础:服务

    什么是服务(Service) 在Angular 2 中我们提到的服务 service 一般指的是 哪些能够被其他组件或者指令调用的 单一的,可共享的 代码块.当然,通过服务可以将数据和组件分开,这样就 ...

  3. Linux系统调用、新增系统调用方法【转】

    转自:http://blog.chinaunix.net/uid-25374603-id-3401045.html 说明: 系统调用是内核和应用程序间的接口,应用程序要访问硬件设备和其他操作系统资源, ...

  4. c/c++中static用法总结

    static的作用主要有两种: 第一个作用是限定作用域:第二个作用是保持变量内容持久化: c语言中static的用法: 1.全局静态变量: 用法:在全局变量前加上关键字static,全局变量就定义成一 ...

  5. springboot使用fastJson作为json解析框架

    springboot使用fastJson作为json解析框架 springboot默认自带json解析框架,默认使用jackson,如果使用fastjson,可以按照下列方式配置使用 〇.搭建spri ...

  6. 【IT公司笔试面试】75道逻辑推理题及答案

    [1]假设有一个池塘,里面有无穷多的水.现有2个空水壶,容积分别为5升和6升.问题是如何只用这2个水壶从池塘里取得3升的水. 由满6向空5倒,剩1升,把这1升倒5里,然后6剩满,倒5里面,由于5里面有 ...

  7. 表格中上移下移置顶的js操作

    <script> $(function(){  //上移  var $up = $(".up")  $up.click(function() {   var $tr = ...

  8. Linux上java环境变量配置

    1.java配置 配置环境变量在/etc/profile下增加 # set Java environment JAVA_HOME=/usr/share/jdk1.6.0_43 PATH=$JAVA_H ...

  9. Java基础1,入门基础知识

    本文知识点(目录): 1.java简介    2.环境的搭建    3.关键字    4.标识符    5.注释    6.常量    7.进制的转换    8.变量    9.数据类型的转换    ...

  10. BootStarp的form表单的基本写法

    代码如下: <!DOCTYPE html> <html> <head> <title>BootStrap的基础入门</title> < ...