BZOJ3209 花神的数论题 【组合数学+数位DP+快速幂】*
BZOJ3209 花神的数论题
Description
背景
众所周知,花神多年来凭借无边的神力狂虐各大 OJ、OI、CF、TC …… 当然也包括 CH 啦。
描述
话说花神这天又来讲课了。课后照例有超级难的神题啦…… 我等蒟蒻又遭殃了。
花神的题目是这样的
设 sum(i) 表示 i 的二进制表示中 1 的个数。给出一个正整数 N ,花神要问你
派(Sum(i)),也就是 sum(1)—sum(N) 的乘积。
Input
一个正整数 N。
Output
一个数,答案模 10000007 的值。
Sample Input
样例输入一
3
Sample Output
样例输出一
2
HINT
对于样例一,1∗1∗2=21*1*2=21∗1∗2=2;
数据范围与约定
对于 100% 的数据,N≤10^15
因为我们发现二进制位中1的个数不会太多,所以我们就想到了快速幂来做这题
但是如何计算小于等于n的数中二进制位有一定个数1的数的个数呢?
假设我们固定一个数的前i位和n相同,然后如果n的当前位是0必须相等,如果当前位n的二进制是1那么我们固定当前位置是0,就可以用组合数算出剩下的几个二进制位的方案数了
注意我们这样只能算严格小于n的贡献,所以n的贡献在一开始就需要统计上
#include<bits/stdc++.h>
using namespace std;
#define fu(a,b,c) for(int a=b;a<=c;++a)
#define fd(a,b,c) for(int a=b;a>=c;--a)
#define LL long long
#define N 60
#define Mod 10000007
LL n,p[N],len=;
LL c[N][N];
void init(){
fu(i,,N-)c[i][]=;
fu(i,,N-)
fu(j,,i)c[i][j]=c[i-][j]+c[i-][j-];
}
LL fast_pow(LL a,LL b){
LL res=;
while(b){
if(b&)res=res*a%Mod;
b>>=;
a=a*a%Mod;
}
return res;
}
LL count(int num){
LL res=;
fd(i,len,)if(p[i]){
res+=c[i-][num];
num--;
if(num<)return res;
}
return res;
}
int main(){
init();
scanf("%lld",&n);
LL ans=;
while(n){
p[++len]=n&;
n>>=;
}
fu(i,,len)ans+=p[i];
fu(i,,len)ans=ans*fast_pow(i,count(i))%Mod;
printf("%lld",ans);
return ;
}
BZOJ3209 花神的数论题 【组合数学+数位DP+快速幂】*的更多相关文章
- [bzoj3209]花神的数论题_数位dp
花神的数论题 bzoj-3209 题目大意:sum(i)表示i的二进制表示中1的个数,求$\prod\limits_{i=1}^n sum(i)$ 注释:$1\le n\le 10^{15}$. 想法 ...
- [Bzoj3209]花神的数论题(数位dp)
3209: 花神的数论题 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2633 Solved: 1182[Submit][Status][Disc ...
- bzoj3209 花神的数论题 (二进制数位dp)
二进制数位dp,就是把原本的数字转化成二进制而以,原来是10进制,现在是二进制来做,没有想像的那么难 不知到自己怎么相出来的...感觉,如果没有一个明确的思路,就算做出来了,也并不能锻炼自己的能力,因 ...
- 2018.10.27 bzoj3209: 花神的数论题(数位dp)
传送门 数位dpdpdp经典题. 题面已经暗示了我们按照二进制位来数位dpdpdp. 直接dpdpdp多少个数有111个111,222个111,333个111-, 然后快速幂算就行了. 于是我们枚举前 ...
- 【洛谷】4317:花神的数论题【数位DP】
P4317 花神的数论题 题目背景 众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦. 题目描述 话说花神这天又来讲课了.课后照例有超级难的神题啦…… 我 ...
- 【BZOJ3209】花神的数论题(数位DP)
点此看题面 大致题意: 设\(sum(i)\)表示\(i\)二进制中1的个数,请求出\(\prod_{i=1}^n sum(i)\). 数位\(DP\) 很显然,这是一道数位\(DP\)题.我们可以先 ...
- BZOJ 3209: 花神的数论题【数位dp】
Description 背景众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦.描述话说花神这天又来讲课了.课后照例有超级难的神题啦…… 我等蒟蒻又遭殃了. ...
- BZOJ3209: 花神的数论题(数位DP)
题目: 3209: 花神的数论题 解析: 二进制的数位DP 因为\([1,n]\)中每一个数对应的二进制数是唯一的,我们枚举\(1\)的个数\(k\),计算有多少个数的二进制中有\(k\)个\(1\) ...
- [BZOJ3209]花神的数论题 组合数+快速幂
3209: 花神的数论题 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2498 Solved: 1129[Submit][Status][Disc ...
随机推荐
- tcpdump抓包笔记
抓取指定端口的数据包 并保存文件,用wireshark分析 tcpdump -Ans 4096 -i any port 8080 -w ../mpass.cap 抓取指定端口和指定ip的数据包 并保存 ...
- 经典C#面试题
1.在下面的代码中,如何引用命名空间fabulous中的great? namespace fabulous{// code in fabulous namespace}namespace super{ ...
- python的变量,对象的内存地址以及参数传递过程
作为一个由c/c++转过来的菜鸟,刚接触Python的变量的时候很不适应,应为他的行为很像指针,void* ,不知道大家有没有这样的感觉.其实Python是以数据为本,变量可以理解为标签.作为c/c+ ...
- springboot项目属性配置及注意事项
在idea编辑器建的springboot项目中的resources包下的application.properties这个就是配置文件. 另外配置文件的文件名还可以是application.yml,在r ...
- 英语词根与单词的说文解字---词根示例1、第10页 st(at)
英语词根与单词的说文解字---词根示例1.第10页 st(at) 一.总结 一句话总结: 站 state,establish,constitution 英 [ɪ'stæblɪʃ; e-] 美 [ɪˈ ...
- 在阿里云服务器上搭建 Apache Tomat 应用
在阿里云上购买一台服务器,系统采用 window 2008 Server 企业版,64位 1.下载Java7 JRE,安装 http://www.java.com/zh_CN/download/man ...
- FlexboxLayout——Android弹性布局
FlexboxLayout是一个Android平台上与CSS的 Flexible box 弹性盒子布局模块 有相似功能的库.Flexbox 是CSS 的一种布局方案,可以简单.快捷的实现复杂布局. F ...
- Python打包分发工具setuptools简介(转)
作为Python标准的打包及分发工具,setuptools可以说相当地简单易用.它会随着Python一起安装在你的机器上.你只需写一个简短的setup.py安装文件,就可以将你的Python应用打包. ...
- 虚拟机中安装windows server 2008方法
我们简单的介绍一下怎么在虚拟机上安装 windows server 2008系统. 工具/原料 已经安装好的虚拟机. windows server 2008 iso系统镜像 方法/步骤1虚拟机上虚 ...
- 七、dbms_rowid(用于在PL/SQL程序和SQL语句中取得行标识符)
1.概述 作用:用于在PL/SQL程序和SQL语句中取得行标识符(rowid)的信息并建立ROWID,通过该包可以取得行所在的文件号,行所在文件的数据块号,行所在数据块的行号,以及数据库对象号等消息. ...