Description

Sam和他的妹妹Sara有一个包含n × m个方格的表格。她们想要将其的每个方格都染成红色或蓝色。出于个人喜好,他们想要表格中每个2 × 2的方形区域都包含奇数个(1 个或 3 个)红色方格。例如,右图是一个合法的表格染色方案(在打印稿中,深色代表蓝色,浅色代表红色) 。

可是昨天晚上,有人已经给表格中的一些方格染上了颜色!现在Sam和Sara非常生气。不过,他们想要知道是否可能给剩下的方格染上颜色,使得整个表格仍然满足她们的要求。如果可能的话,满足他们要求的染色方案数有多少呢?

Input

输入的第一行包含三个整数n, m和k,分别代表表格的行数、列数和已被染色的方格数目。

之后的k行描述已被染色的方格。其中第 i行包含三个整数xi, yi和ci,分别代表第 i 个已被染色的方格的行编号、列编号和颜色。ci为 1 表示方格被染成红色,ci为 0表示方格被染成蓝色。

Output

输出一个整数,表示可能的染色方案数目 W 模 10^9得到的值。(也就是说,如果 W大于等于10^9,则输出 W被10^9除所得的余数)。

对于所有的测试数据,2 ≤ n, m ≤ 10^6,0 ≤ k ≤ 10^6,1 ≤ xi ≤ n,1 ≤ yi ≤ m。

Sample Input

3 4 3

2 2 1

1 2 0

2 3 1

Sample Output

8


思路

发现行和行之间是可以相互影响的

进一步发现i行只能在i-1行的基础上把所有奇数列或者偶数列全部异或,所以就可以考虑每一行的数对第一行的影响就可以了

因为每一行都会影响第一行取值的情况,所以把第一行建立并查集。

一个是维护联通关系的普通并查集

一个是维护抑或关系的带权并查集

然后就可以维护了

最后答案是\(2^{第一行联通块个数+没有染色的格子数量}\)


还是看了hwzer学长的blog才会的


#include<bits/stdc++.h>
using namespace std;
#define Mod 1000000000
#define N 1000010
#define LL long long
int n,m,K,tot;
int fa[N],fat[N],g[N];
bool mark[N],vis[N];
vector<int> p[N],col[N];
int fast_pow(LL a,LL b){
LL ans=1;
while(b){
if(b&1)ans=a*ans%Mod;
b>>=1;
a=a*a%Mod;
}
return ans;
}
int find1(int x){
if(x==fa[x])return x;
return fa[x]=find1(fa[x]);}
int find2(int x){
if(x==fat[x])return x;
int tmp=find2(fat[x]);
g[x]^=g[fat[x]];
return fat[x]=tmp;
}
bool merge(int x,int y,int t){
int fx=find2(x),fy=find2(y);
if(fx==fy)return (g[x]^g[y])==t;
fat[fx]=fy;
g[fx]=(g[x]^g[y]^t);
return 1;
}
int main(){
scanf("%d%d%d",&n,&m,&K);
for(int i=1;i<=m;i++)fa[i]=i,fat[i]=i;
for(int i=1;i<=K;i++){
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
if(x==1)vis[y]=1;
mark[x]=1;
p[x].push_back(y);
col[x].push_back(z);
}
for(int i=1;i<=n;i++)
for(int j=1;j<(signed)p[i].size();j++){
int x=p[i][j],y=p[i][j-1];
int cx=col[i][j],cy=col[i][j-1];
int fx=find1(x),fy=find1(y);
fa[fx]=fy;
if(vis[fx])vis[fy]=1;
int t=cx^cy;
if(x%2!=y%2)t=(t^(i-1))&1;
if(!merge(x,y,t)){puts("0");return 0;}
}
for(int i=1;i<=m;i++)if(fa[i]==i&&vis[i]==0)tot++;
for(int i=2;i<=n;i++)if(!mark[i])tot++;
printf("%d\n",fast_pow(2,tot));
return 0;
}

BZOJ2303: [Apio2011]方格染色 【并查集】的更多相关文章

  1. BZOJ2303 [Apio2011]方格染色 并查集

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ2303 题意概括 现在有一个N*M矩阵,矩阵上只能填数字0或1 现在矩阵里已经有一些格子被填写了数字 ...

  2. BZOJ 2303: [Apio2011]方格染色 [并查集 数学!]

    题意: $n*m:n,m \le 10^6$的网格,每个$2 \times 2$的方格必须有1个或3个涂成红色,其余涂成蓝色 有一些方格已经有颜色 求方案数 太神了!!!花我三节课 首先想了一下只有两 ...

  3. [BZOJ2303][Apio2011]方格染色

    [BZOJ2303][Apio2011]方格染色 试题描述 Sam和他的妹妹Sara有一个包含n × m个方格的 表格.她们想要将其的每个方格都染成红色或蓝色. 出于个人喜好,他们想要表格中每个2 × ...

  4. BZOJ2303 APIO2011方格染色

    这题太神了 首先我们可以发现只有当i和j都是偶数时a[1][1]^a[1][j]^a[i][1]^a[i][j]=1才满足情况,其它时都为0 所以我们可以先把i和j都为偶数的地方^1变为0 下面才是最 ...

  5. BZOJ2303 APIO2011方格染色(并查集)

    比较难想到的是将题目中的要求看做异或.那么有ai,j^ai+1,j^ai,j+1^ai+1,j+1=1.瞎化一化可以大胆猜想得到a1,1^a1,j^ai,1^ai,j=(i-1)*(j-1)& ...

  6. BZOJ_2303_[Apio2011]方格染色 _并查集

    BZOJ_2303_[Apio2011]方格染色 _并查集 Description Sam和他的妹妹Sara有一个包含n × m个方格的 表格.她们想要将其的每个方格都染成红色或蓝色. 出于个人喜好, ...

  7. bzoj 2303: [Apio2011]方格染色【并查集】

    画图可知,每一行的状态转移到下一行只有两种:奇数列不变,偶数列^1:偶数列不变,奇数列^1 所以同一行相邻的变革染色格子要放到同一个并查集里,表示这个联通块里的列是联动的 最后统计下联通块数(不包括第 ...

  8. bzoj 2303: [Apio2011]方格染色

    传送门 Description Sam和他的妹妹Sara有一个包含n × m个方格的表格.她们想要将其的每个方格都染成红色或蓝色.出于个人喜好,他们想要表格中每个2 × 2的方形区域都包含奇数个(1 ...

  9. 【题解】P3631 [APIO2011]方格染色

    很有意思的一道题,所以单独拿出来了. 完整分享看 这里 题目链接 luogu 题意 有一个包含 \(n \times m\) 个方格的表格.要将其中的每个方格都染成红色或蓝色.表格中每个 \(2 \t ...

随机推荐

  1. 使用xunit对asp.net core webapi进行集成测试

    新项目我们采用前后端分离,后端采用asp.net core webapi, 如何对后端代码进行自动化测试呢,有以下几种方案: 1. 单元测试,目前这个方案对我们来说难度很大,抛开时间的问题,单元测试对 ...

  2. webjars-jquery的引用

    什么是WebJars WebJars以jar包的形式来使用前端的各种框架.组件,如jquery.bootstrap WebJars将客户端(浏览器)资源(JavaScript,Css等)打成jar包文 ...

  3. ADC和RTC的寄存器的读取

    ADC的寄存器读取,int adc_read(void){ int result; #if ADSTART==0 result = ADC.ADCDAT0&0x3ff; while(!(ADC ...

  4. Mac OSX 如何在命令行中生成 md5、sha1、sha256 校验和

    计算 MD5 校验和 md5 /tmp/hello.txt 计算 SHA-1 校验和 shasum -a 1 /tmp/hello.txt 计算 SHA-256 校验和 shasum -a 256 / ...

  5. 永久以管理员身份运行cmd

    系统:win7 1,下图输入 cmd,找到cmd 2,发送到桌面快捷方式 3,在桌面上的cmd,右键,属性 点高级,进入后,勾上 管理员.

  6. ContOS网络连接及简单的ssh Xshell连接!

    这边简单的记录一下下ContOS网络连接及简单的ssh Xshell连接! 首先你得安装一个Contos Linux系统对吧! 1.找到设置--->网络-->有线连接-->IPv4 ...

  7. anaconda的一些命令

    先安装好TensorFlow. 1.安装sklearn 本安装方式是在anaconda prompt上用命令来更新 (1)激活TensorFlow:activate tensorflow (2)查看是 ...

  8. UVA-10269 Adventure of Super Mario (dijkstra)

    题目大意:有A个村庄,B个城市,m条边,从起点到终点,找一条最短路径.但是,有一种工具可以使人不费力的移动L个长度,但始末点必须是城市或村庄.这种工具有k个,每个只能使用一次,并且在城市内部不可使用, ...

  9. LoadBalancerv2的原理分析

    OpenStack 是直接采用各种开源可用的负载均衡项目来完成负载均衡的任务,默认使用 HAProxy.LBaaSv2 本质来说,其实也是根据用户提出的负载均衡要求,生成符合的HAProxy配置文件并 ...

  10. MySQL Cluster --01

    [MySQL Cluster] MySQL Cluster 是MySQL 官方集群部署方案, 支持自动分片.读写扩展:通过实时备份冗余数据.适合于分布式计算环境的高实用.高冗余版本,是可用性最高的方案 ...