AC自动机算法
AC自动机简介:
首先简要介绍一下AC自动机:Aho-Corasick automation,该算法在1975年产生于贝尔实验室,是著名的多模匹配算法之一。一个常见的例子就是给出n个单词,再给出一段包含m个字符的文 章,让你找出有多少个单词在文章里出现过。要搞懂AC自动机,先得有字典树Trie和KMP模式匹配算法的基础知识。KMP算法是单模式串的字符匹配算 法,AC自动机是多模式串的字符匹配算法。
AC自动机的构造:
1.构造一棵Trie,作为AC自动机的搜索数据结构。
2.构造fail指针,使当前字符失配时跳转到具有最长公共前后缀的字符继续匹配。如 同 KMP算法一样, AC自动机在匹配时如果当前字符匹配失败,那么利用fail指针进行跳转。由此可知如果跳转,跳转后的串的前缀,必为跳转前的模式串的后缀并且跳转的新位 置的深度(匹配字符个数)一定小于跳之前的节点。所以我们可以利用 bfs在 Trie上面进行 fail指针的求解。
3.扫描主串进行匹配。
AC自动机详讲:
我们给出5个单词,say,she,shr,he,her。给定字符串为yasherhs。问多少个单词在字符串中出现过。
一、Trie
首先我们需要建立一棵Trie。但是这棵Trie不是普通的Trie,而是带有一些特殊的性质。
首先会有3个重要的指针,分别为p, p->fail, temp。
1.指针p,指向当前匹配的字符。若p指向root,表示当前匹配的字符序列为空。(root是Trie入口,没有实际含义)。
2.指针p->fail,p的失败指针,指向与字符p相同的结点,若没有,则指向root。
3.指针temp,测试指针(自己命名的,容易理解!~),在建立fail指针时有寻找与p字符匹配的结点的作用,在扫描时作用最大,也最不好理解。
对于Trie树中的一个节点,对应一个序列s[1...m]。此时,p指向字符s[m]。若在下一个字符处失配,即p->next[s[m+1]] == NULL,则由失配指针跳到另一个节点(p->fail)处,该节点对应的序列为s[i...m]。若继续失配,则序列依次跳转直到序列为空或出现 匹配。在此过程中,p的值一直在变化,但是p对应节点的字符没有发生变化。在此过程中,我们观察可知,最终求得得序列s则为最长公共后缀。另外,由于这个 序列是从root开始到某一节点,则说明这个序列有可能是某些序列的前缀。
再次讨论p指针转移的意义。如果p指针在某一字符s[m+1]处失配(即p->next[s[m+1]] == NULL),则说明没有单词s[1...m+1]存在。此时,如果p的失配指针指向root,则说明当前序列的任意后缀不会是某个单词的前缀。如果p的失 配指针不指向root,则说明序列s[i...m]是某一单词的前缀,于是跳转到p的失配指针,以s[i...m]为前缀继续匹配s[m+1]。
对于已经得到的序列s[1...m],由于s[i...m]可能是某单词的后缀,s[1...j]可能是某单词的前缀,所以s[1...m]中可能会出现 单词。此时,p指向已匹配的字符,不能动。于是,令temp = p,然后依次测试s[1...m], s[i...m]是否是单词。
构造的Trie为:

二、构造失败指针
用BFS来构造失败指针,与KMP算法相似的思想。
首先,root入队,第1次循环时处理与root相连的字符,也就是各个单词的第一个字符h和s,因为第一个字符不匹配需要重新匹配,所以第一个字符都指
向root(root是Trie入口,没有实际含义)失败指针的指向对应下图中的(1),(2)两条虚线;第2次进入循环后,从队列中先弹出h,接下来p
指向h节点的fail指针指向的节点,也就是root;p=p->fail也就是p=NULL说明匹配序列为空,则把节点e的fail指针指向
root表示没有匹配序列,对应图-2中的(3),然后节点e进入队列;第3次循环时,弹出的第一个节点a的操作与上一步操作的节点e相同,把a的
fail指针指向root,对应图-2中的(4),并入队;第4次进入循环时,弹出节点h(图中左边那个),这时操作略有不同。由于
p->next[i]!=NULL(root有h这个儿子节点,图中右边那个),这样便把左边那个h节点的失败指针指向右边那个root的儿子节点
h,对应图-2中的(5),然后h入队。以此类推:在循环结束后,所有的失败指针就是图-2中的这种形式。
三、扫描
构造好Trie和失败指针后,我们就可以对主串进行扫描了。这个过程和KMP算法很类似,但是也有一定的区别,主要是因为AC自动机处理的是多串模式,需要防止遗漏某个单词,所以引入temp指针。
匹配过程分两种情况:(1)当前字符匹配,表示从当前节点沿着树边有一条路径可以到达目标字符,此时只需沿该路径走向下一个节点继续匹配即可,目标
字符串指针移向下个字符继续匹配;(2)当前字符不匹配,则去当前节点失败指针所指向的字符继续匹配,匹配过程随着指针指向root结束。重复这2个过程
中的任意一个,直到模式串走到结尾为止。
对照上图,看一下模式匹配这个详细的流程,其中模式串为yasherhs。对于i=0,1。Trie中没有对应的路径,故不做任何操
作;i=2,3,4时,指针p走到左下节点e。因为节点e的count信息为1,所以cnt+1,并且讲节点e的count值设置为-1,表示改单词已经
出现过了,防止重复计数,最后temp指向e节点的失败指针所指向的节点继续查找,以此类推,最后temp指向root,退出while循环,这个过程中
count增加了2。表示找到了2个单词she和he。当i=5时,程序进入第5行,p指向其失败指针的节点,也就是右边那个e节点,随后在第6行指向r
节点,r节点的count值为1,从而count+1,循环直到temp指向root为止。最后i=6,7时,找不到任何匹配,匹配过程结束。
AC自动机算法的更多相关文章
- AC自动机-算法详解
What's Aho-Corasick automaton? 一种多模式串匹配算法,该算法在1975年产生于贝尔实验室,是著名的多模式匹配算法之一. 简单的说,KMP用来在一篇文章中匹配一个模式串:但 ...
- AC自动机算法详解
首先简要介绍一下AC自动机:Aho-Corasick automation,该算法在1975年产生于贝尔实验室,是著名的多模匹配算法之一.一个常见的例子就是给出n个单词,再给出一段包含m个字符的文章, ...
- AC自动机算法详解 (转载)
首先简要介绍一下AC自动机:Aho-Corasick automation,该算法在1975年产生于贝尔实验室,是著名的多模匹配算法之一.一个常见的例子就是给出n个单词,再给出一段包含m个字符的文章, ...
- (转)两种高效过滤敏感词算法--DFA算法和AC自动机算法
原文:https://blog.csdn.net/u013421629/article/details/83178970 一道bat面试题:快速替换10亿条标题中的5万个敏感词,有哪些解决思路? 有十 ...
- AC自动机算法小结
AC自动机,可惜不能自动AC 转载:飘过的小牛 OIer55242 简介 Aho-Corasick automation 该算法在1975年产生于贝尔实验室,是著名的多模匹配算法之一.一个常见的例子就 ...
- 转载 - AC自动机算法
出处:http://blog.csdn.net/niushuai666/article/details/7002823 AC自动机简介: 首先简要介绍一下AC自动机:Aho-Corasick aut ...
- AC自动机算法 && 例题
参考链接: https://blog.csdn.net/bestsort/article/details/82947639#commentBox https://blog.csdn.net/niush ...
- AC自动机算法学习
KMP+TRIE int val[1000100][31],tot; int tr[1000100]; int fail[1000100]; struct AC_Trie{ void clean(){ ...
- AC自动机——多模式串匹配的算法思想
标准KMP算法用于单一模式串的匹配,即在母串中寻求一个模式串的匹配,但是现在又存在这样的一个问题,如果同时给出多个模式串,要求找到这一系列模式串在母串存在的匹配个数,我们应该如何处理呢? 基于KMP算 ...
随机推荐
- HDU5115:Dire Wolf——题解+翻译
http://acm.hdu.edu.cn/showproblem.php?pid=5115 题目大意:给n匹狼,每一次攻击可以秒杀一匹狼,但同时会受到这匹狼的a攻击和它相邻两只狼的b攻击. 给定a, ...
- Java日期时间实用工具类
Java日期时间实用工具类 1.Date (java.util.Date) Date(); 以当前时间构造一个Date对象 Date(long); 构造函数 ...
- JQuery学习一
第一个JQuery程序 <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <he ...
- ASP.NET创建三层架构图解详细教程
1.新建项目 2.创建Visual Studio解决方案 3.再创建项目 4.选择类库类型 5.依次创建bll(业务逻辑层),dal(数据访问层)和model(模型层也可以叫实体层) 6.添加一个网站 ...
- Python爬虫学习笔记之微信宫格验证码的识别(存在问题)
本节我们将介绍新浪微博宫格验证码的识别.微博宫格验证码是一种新型交互式验证码,每个宫格之间会有一条 指示连线,指示了应该的滑动轨迹.我们要按照滑动轨迹依次从起始宫格滑动到终止宫格,才可以完成验证,如 ...
- ES6 利用集合Set解决数组 交集 并集 差集的问题
根据阮一峰老师的ES6教程自己体会而写的,希望能给一些朋友有帮助到 let a = new Set([1,2,3,4]) let b = new Set([2,3,4,5,]) 并集 let unio ...
- ZooKeeper观察者(十三)
观察者:扩展ZooKeeper而不影响写性能 尽管ZK运行地很好通过客户端直接连接来投票集群的成员,这个结构使它很难扩展出很多客户端.问题是当我们加入更多的投票成员时,写性能就会下降.这是因为一个写操 ...
- MySql 利用函数 查询所有子节点
前提:mysql 函数 find_in_set(str,strlist), cast(value as type) 一.find_in_set(str,strlist):如果字符串str是在的 ...
- mysql 数据库备份与还原,用户的创建与删除,用户的密码修改
1.备份数据库 要退出mysql rimideiMac-23:~ rimi$ mysqldump -u root -p pro >pro.sql ls 查看路径 2.恢复数据库 2.1直接 ...
- Exponial (欧拉定理+指数循环定理+欧拉函数+快速幂)
题目链接:http://acm.csu.edu.cn/csuoj/problemset/problem?pid=2021 Description Everybody loves big numbers ...