HDOJ 1501 Zipper 【DP】【DFS+剪枝】
HDOJ 1501 Zipper 【DP】【DFS+剪枝】
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 10886 Accepted Submission(s): 3925
Problem Description
Given three strings, you are to determine whether the third string can be formed by combining the characters in the first two strings. The first two strings can be mixed arbitrarily, but each must stay in its original order.
For example, consider forming “tcraete” from “cat” and “tree”:
String A: cat
String B: tree
String C: tcraete
As you can see, we can form the third string by alternating characters from the two strings. As a second example, consider forming “catrtee” from “cat” and “tree”:
String A: cat
String B: tree
String C: catrtee
Finally, notice that it is impossible to form “cttaree” from “cat” and “tree”.
Input
The first line of input contains a single positive integer from 1 through 1000. It represents the number of data sets to follow. The processing for each data set is identical. The data sets appear on the following lines, one data set per line.
For each data set, the line of input consists of three strings, separated by a single space. All strings are composed of upper and lower case letters only. The length of the third string is always the sum of the lengths of the first two strings. The first two strings will have lengths between 1 and 200 characters, inclusive.
Output
For each data set, print:
Data set n: yes
if the third string can be formed from the first two, or
Data set n: no
if it cannot. Of course n should be replaced by the data set number. See the sample output below for an example.
Sample Input
3
cat tree tcraete
cat tree catrtee
cat tree cttaree
Sample Output
Data set 1: yes
Data set 2: yes
Data set 3: no
题意
给出三个字符串 a, b, c 询问 字符串 C是不是由 字符串 A,B 顺序取出来组成的,也就是说,字符串C中取出两个子序列,会不会这两个子序列一个是A,一个是B 如果满足这个条件 是yes 反之 no
思路【DP】
假如字符串C的最后一个字符是字符串A 或者字符串B 的 那么 字符串C -1 的字符串 必然是由 字符串A -1 组成的字符串和字符串B 顺序取出 或者 是 字符串A 和字符串B - 1组成的字符串顺序取出,往前推就可以了
所以
DP[i][j] 分别表示 取字符串 A 的前 i 位,取字符串 B 的前 j 位
如果 DP[i - 1][j] == 1 && A[i - 1] == C[i + j - 1]
那么 DP[i][j] = 1
或者如果 DP[i][j - 1] == 1 && B[j - 1] == C[i + j - 1]
那么DP[i][j] = 1
AC代码
#include <bits/stdc++.h> //DP
using namespace std;
const int maxn = 2 * 1e2 + 5;
int dp[maxn][maxn];
int main()
{
int t;
cin >> t;
int i, j, k;
for (k = 1; k <= t; k++)
{
string s[3];
int len[3];
for (i = 0; i < 3; i++)
{
cin >> s[i];
len[i] = s[i].size();
}
memset(dp, 0, sizeof(dp));
for (i = 0; i < len[0]; i++)
{
if (s[0][i] == s[2][i])
dp[i + 1][0] = 1;
else
break;
}
for (i = 0; i < len[1]; i++)
{
if (s[1][i] == s[2][i])
dp[0][i + 1] = 1;
else
break;
}
for (i = 1; i <= len[0]; i++)
{
for (j = 1; j <= len[1]; j++)
{
if (dp[i - 1][j] && s[0][i - 1] == s[2][i + j - 1])
dp[i][j] = 1;
if (dp[i][j - 1] && s[1][j - 1] == s[2][i + j - 1])
dp[i][j] = 1;
}
}
printf("Data set %d: ", k);
if (dp[len[0]][len[1]])
cout << "yes\n";
else
cout << "no\n";
}
}
思路【DFS】
如果 满足 a[x] == c[x + y]
那么我们就往 x + 1, y 去找
如果 满足 b[y] == c[x + y]
那么我们就往 x, y + 1 去找
AC代码
#include <bits/stdc++.h> //DFS
using namespace std;
const int maxn = 2 * 1e2 + 5;
string a, b, c;
int len_a, len_b, len_c;
int ans;
int vis[maxn][maxn];
void dfs(int x, int y)
{
if (x + y == len_c)
{
ans = 1;
return ;
}
if (vis[x][y])
return ;
if (a[x] == c[x + y])
{
vis[x][y] = 1;
dfs(x + 1, y);
}
if (b[y] == c[x + y])
{
vis[x][y] = 1;
dfs(x, y + 1);
}
}
int main()
{
int t;
int k;
cin >> t;
for (k = 1; k <= t; k++)
{
cin >> a >> b >> c;
len_a = a.size(), len_b = b.size(), len_c = c.size();
printf("Data set %d: ", k);
ans = 0;
memset(vis, 0, sizeof(vis));
dfs(0, 0);
if (ans)
cout << "yes\n";
else
cout << "no\n";
}
}
HDOJ 1501 Zipper 【DP】【DFS+剪枝】的更多相关文章
- HDU 1501 Zipper 【DFS+剪枝】
HDU 1501 Zipper [DFS+剪枝] Problem Description Given three strings, you are to determine whether the t ...
- HDOJ 1501 Zipper 【简单DP】
HDOJ 1501 Zipper [简单DP] Problem Description Given three strings, you are to determine whether the th ...
- HDU 1501 Zipper(DP,DFS)
意甲冠军 是否可以由串来推断a,b字符不改变其相对为了获取字符串的组合c 本题有两种解法 DP或者DFS 考虑DP 令d[i][j]表示是否能有a的前i个字符和b的前j个字符组合得到c的前i+j ...
- HDOJ(1010)DFS+剪枝
Tempter of the Bone http://acm.hdu.edu.cn/showproblem.php?pid=1010 #include <stdio.h> #include ...
- HDU 1501 Zipper(DFS)
Problem Description Given three strings, you are to determine whether the third string can be formed ...
- 【题解】P3959 宝藏 - 状压dp / dfs剪枝
P3959 宝藏 题目描述 参与考古挖掘的小明得到了一份藏宝图,藏宝图上标出了 n 个深埋在地下的宝藏屋, 也给出了这 n 个宝藏屋之间可供开发的m 条道路和它们的长度. 小明决心亲自前往挖掘所有宝 ...
- DFS+剪枝 HDOJ 5323 Solve this interesting problem
题目传送门 /* 题意:告诉一个区间[L,R],问根节点的n是多少 DFS+剪枝:父亲节点有四种情况:[l, r + len],[l, r + len - 1],[l - len, r],[l - l ...
- HDOJ.1342 Lotto (DFS)
Lotto [从零开始DFS(0)] 点我挑战题目 从零开始DFS HDOJ.1342 Lotto [从零开始DFS(0)] - DFS思想与框架/双重DFS HDOJ.1010 Tempter of ...
- HDOJ(HDU).1015 Safecracker (DFS)
HDOJ(HDU).1015 Safecracker [从零开始DFS(2)] 从零开始DFS HDOJ.1342 Lotto [从零开始DFS(0)] - DFS思想与框架/双重DFS HDOJ.1 ...
随机推荐
- python from import 自定义模块
from douban250.items import Douban250Item python import 自定义模块 (1)主程序与模块程序在同一目录下: 如下面程序结构: `-- src ...
- WebApi接口传参不再困惑:传参详解
http://www.cnblogs.com/landeanfen/p/5337072.html
- HTTP请求的过程&HTTP/1.0和HTTP/1.1的区别&HTTP怎么处理长连接
http://www.cnblogs.com/GumpYan/p/5821193.html
- JavaScript------获取表单信息
<form name="fname"> <input type="text" name="user" /> < ...
- mysql-bin.000001文件的来源及处理方法【转】
在MySQL数据库中,mysql-bin.000001.mysql- bin.000002等文件是数据库的操作日志,例如UPDATE一个表,或者DELETE一些数据,即使该语句没有匹配的数据,这个命令 ...
- 配置管理之PackageProvider接口
PackageProvider的开始 从前面几章中我们了解到了一点:想知道如何加载相关配置文件就必须去找StrutsXmlConfigurationProvider类和XmlConfiguratio ...
- js一个数组变为指定长度的多个数组
var dataArr = [0,1,2,3,4,5,6,7,8,9,10]; var newArr = []; var s = parseInt(dataArr.length / 4); var n ...
- shared_ptr & weak_ptr
shared_ptr <1> 类模板说明 namespace boost { class bad_weak_ptr: public std::exception; template< ...
- git pull报错:There is no tracking information for the current branch
报错: There is no tracking information for the current branch. Please specify which branch you want to ...
- 170208、用Navicat自动备份mysql数据库
数据库备份很重要,很多服务器经常遭到黑客的恶意攻击,造成数据丢失,如果没有及时备份的话,后果不堪设想. 一:备份的目的: 做灾难恢复:对损坏的数据进行恢复和还原 需求改变:因需求改变而需要把数据还原到 ...