HDOJ 1501 Zipper 【DP】【DFS+剪枝】
HDOJ 1501 Zipper 【DP】【DFS+剪枝】
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 10886 Accepted Submission(s): 3925
Problem Description
Given three strings, you are to determine whether the third string can be formed by combining the characters in the first two strings. The first two strings can be mixed arbitrarily, but each must stay in its original order.
For example, consider forming “tcraete” from “cat” and “tree”:
String A: cat
String B: tree
String C: tcraete
As you can see, we can form the third string by alternating characters from the two strings. As a second example, consider forming “catrtee” from “cat” and “tree”:
String A: cat
String B: tree
String C: catrtee
Finally, notice that it is impossible to form “cttaree” from “cat” and “tree”.
Input
The first line of input contains a single positive integer from 1 through 1000. It represents the number of data sets to follow. The processing for each data set is identical. The data sets appear on the following lines, one data set per line.
For each data set, the line of input consists of three strings, separated by a single space. All strings are composed of upper and lower case letters only. The length of the third string is always the sum of the lengths of the first two strings. The first two strings will have lengths between 1 and 200 characters, inclusive.
Output
For each data set, print:
Data set n: yes
if the third string can be formed from the first two, or
Data set n: no
if it cannot. Of course n should be replaced by the data set number. See the sample output below for an example.
Sample Input
3
cat tree tcraete
cat tree catrtee
cat tree cttaree
Sample Output
Data set 1: yes
Data set 2: yes
Data set 3: no
题意
给出三个字符串 a, b, c 询问 字符串 C是不是由 字符串 A,B 顺序取出来组成的,也就是说,字符串C中取出两个子序列,会不会这两个子序列一个是A,一个是B 如果满足这个条件 是yes 反之 no
思路【DP】
假如字符串C的最后一个字符是字符串A 或者字符串B 的 那么 字符串C -1 的字符串 必然是由 字符串A -1 组成的字符串和字符串B 顺序取出 或者 是 字符串A 和字符串B - 1组成的字符串顺序取出,往前推就可以了
所以
DP[i][j] 分别表示 取字符串 A 的前 i 位,取字符串 B 的前 j 位
如果 DP[i - 1][j] == 1 && A[i - 1] == C[i + j - 1]
那么 DP[i][j] = 1
或者如果 DP[i][j - 1] == 1 && B[j - 1] == C[i + j - 1]
那么DP[i][j] = 1
AC代码
#include <bits/stdc++.h> //DP
using namespace std;
const int maxn = 2 * 1e2 + 5;
int dp[maxn][maxn];
int main()
{
int t;
cin >> t;
int i, j, k;
for (k = 1; k <= t; k++)
{
string s[3];
int len[3];
for (i = 0; i < 3; i++)
{
cin >> s[i];
len[i] = s[i].size();
}
memset(dp, 0, sizeof(dp));
for (i = 0; i < len[0]; i++)
{
if (s[0][i] == s[2][i])
dp[i + 1][0] = 1;
else
break;
}
for (i = 0; i < len[1]; i++)
{
if (s[1][i] == s[2][i])
dp[0][i + 1] = 1;
else
break;
}
for (i = 1; i <= len[0]; i++)
{
for (j = 1; j <= len[1]; j++)
{
if (dp[i - 1][j] && s[0][i - 1] == s[2][i + j - 1])
dp[i][j] = 1;
if (dp[i][j - 1] && s[1][j - 1] == s[2][i + j - 1])
dp[i][j] = 1;
}
}
printf("Data set %d: ", k);
if (dp[len[0]][len[1]])
cout << "yes\n";
else
cout << "no\n";
}
}
思路【DFS】
如果 满足 a[x] == c[x + y]
那么我们就往 x + 1, y 去找
如果 满足 b[y] == c[x + y]
那么我们就往 x, y + 1 去找
AC代码
#include <bits/stdc++.h> //DFS
using namespace std;
const int maxn = 2 * 1e2 + 5;
string a, b, c;
int len_a, len_b, len_c;
int ans;
int vis[maxn][maxn];
void dfs(int x, int y)
{
if (x + y == len_c)
{
ans = 1;
return ;
}
if (vis[x][y])
return ;
if (a[x] == c[x + y])
{
vis[x][y] = 1;
dfs(x + 1, y);
}
if (b[y] == c[x + y])
{
vis[x][y] = 1;
dfs(x, y + 1);
}
}
int main()
{
int t;
int k;
cin >> t;
for (k = 1; k <= t; k++)
{
cin >> a >> b >> c;
len_a = a.size(), len_b = b.size(), len_c = c.size();
printf("Data set %d: ", k);
ans = 0;
memset(vis, 0, sizeof(vis));
dfs(0, 0);
if (ans)
cout << "yes\n";
else
cout << "no\n";
}
}
HDOJ 1501 Zipper 【DP】【DFS+剪枝】的更多相关文章
- HDU 1501 Zipper 【DFS+剪枝】
HDU 1501 Zipper [DFS+剪枝] Problem Description Given three strings, you are to determine whether the t ...
- HDOJ 1501 Zipper 【简单DP】
HDOJ 1501 Zipper [简单DP] Problem Description Given three strings, you are to determine whether the th ...
- HDU 1501 Zipper(DP,DFS)
意甲冠军 是否可以由串来推断a,b字符不改变其相对为了获取字符串的组合c 本题有两种解法 DP或者DFS 考虑DP 令d[i][j]表示是否能有a的前i个字符和b的前j个字符组合得到c的前i+j ...
- HDOJ(1010)DFS+剪枝
Tempter of the Bone http://acm.hdu.edu.cn/showproblem.php?pid=1010 #include <stdio.h> #include ...
- HDU 1501 Zipper(DFS)
Problem Description Given three strings, you are to determine whether the third string can be formed ...
- 【题解】P3959 宝藏 - 状压dp / dfs剪枝
P3959 宝藏 题目描述 参与考古挖掘的小明得到了一份藏宝图,藏宝图上标出了 n 个深埋在地下的宝藏屋, 也给出了这 n 个宝藏屋之间可供开发的m 条道路和它们的长度. 小明决心亲自前往挖掘所有宝 ...
- DFS+剪枝 HDOJ 5323 Solve this interesting problem
题目传送门 /* 题意:告诉一个区间[L,R],问根节点的n是多少 DFS+剪枝:父亲节点有四种情况:[l, r + len],[l, r + len - 1],[l - len, r],[l - l ...
- HDOJ.1342 Lotto (DFS)
Lotto [从零开始DFS(0)] 点我挑战题目 从零开始DFS HDOJ.1342 Lotto [从零开始DFS(0)] - DFS思想与框架/双重DFS HDOJ.1010 Tempter of ...
- HDOJ(HDU).1015 Safecracker (DFS)
HDOJ(HDU).1015 Safecracker [从零开始DFS(2)] 从零开始DFS HDOJ.1342 Lotto [从零开始DFS(0)] - DFS思想与框架/双重DFS HDOJ.1 ...
随机推荐
- BootStrap带样式打印
在新窗口打印时bootstrap表格的样式出不来,因为打印时没有加载CSS样式. 我在jquery.PrintArea.js的基础上改造了下打印的方法: (function ($) { var pri ...
- ImportError: cannot import name gof
今天打开spyder说调试一个theano程序,但是import theano提示 ImportError: cannot import name gof 最后解决方案 pip install --u ...
- android 性能測试CTS篇
CTS介绍 一.CTS简单介绍 CTS 全称Compatibility Test Suite兼容性測试工具. 当电子产品开发出来.并定制了自己的Android系统后,必需要通过最新的CTS检測.以保证 ...
- centos使用pypy
pypy最大的特点是使用了jit,可以直接使用机器码而非字节码,大大的提高了效率 ======================== 安装步骤 1.安装pypy yum install pypy* -y ...
- ContainerBase.addChild: start: org.apache.catalina.LifecycleException: Failed to start component [StandardEngine[Catalina].StandardHost[localhost].StandardContext[]]
今天第一次遇到Failed to start component [StandardEngine[Catalina].StandardHost[localhost].错误,并且在错误提示的后半段出现了 ...
- 160624、Spark读取数据库(Mysql)的四种方式讲解
目前Spark支持四种方式从数据库中读取数据,这里以Mysql为例进行介绍. 一.不指定查询条件 这个方式链接MySql的函数原型是: 1 def jdbc(url: String, table: S ...
- CodeFores 665D Simple Subset(贪心)
D. Simple Subset time limit per test 1 second memory limit per test 256 megabytes input standard inp ...
- FineReport---数据集
三.文本数据集 文本数据集,就是指数据源是一系列的文本文件,而我们就是要将这些文件作为数据来源,用FineReport来呈现这些数据,并做相应的数据分析. 1)TXT 2)EXCEL 3) 动态的Ex ...
- 巨蟒python全栈开发数据库攻略2:基础攻略2
1.存储引擎表类型 2.整数类型和sql_mode 3.浮点类&字符串类型&日期类型&集合类型&枚举类型 4.数值类型补充 5.完整性约束
- 使用ServiceStack缓存技术
ServiceStack 是一个高性能的 .NET Web 服务框架,简化了开发 XML.JSON.JSV 和 WCP SOAP Web 服务.它定义了符合 Martin Fowlers 数据传输对象 ...