#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <ctype.h>
#include <math.h>
#include <iostream>
#include <string>
#include <stack>
#include <vector>
#include <set>
#include <queue>
#include <algorithm>
#define LL long long int
#define N 100000+10 //最大节点数
#define M 1000000+10 //最大的边数
#define MOD 142857
//N<=10^5, M<=10^6 using namespace std;
int n, m;
struct node
{
int v, w;
bool operator<(const node &dd)const{
return w>dd.w;
} //权值小的优先
};
vector<node>q[N];
bool vis[N];
//堆优化的prim算法
LL ans; void queue_prim()
{
//以节点1为起点进行扩展安全边 生成最小树
priority_queue<node>que;
while(!que.empty())
que.pop(); //初始化清空优先队列 维护一个小根堆
//这样每次找安全边的速度就提高了
ans = ;
memset(vis, false, sizeof(vis));
for(int i=; i<q[].size(); i++){
que.push(q[][i]); //将起点的所有连接边全部加入队列中来
}
vis[]=true;
int edge=n-;//边数
node cur;
while(edge--)
{
cur = que.top();
que.pop();//这个地方需要注意一下
//并不是每个从优先队列取出来的边都是可以加到生成树上去的 if(vis[cur.v]==true){
while(vis[cur.v]){
cur=que.top(); que.pop();
}
}
ans = ans+cur.w; //printf("%d-- ", cur.w );
vis[cur.v]=true; //加入生成树的该点将被标记访问
for(int i=; i<q[cur.v].size(); i++){
if(vis[ q[cur.v][i].v ]==false) //当前加入生成树的点可以扩充出的边指向的节点
que.push(q[cur.v][i]);//如果没有被访问才会加入到队列当中来
}
}
} int main()
{
scanf("%d %d", &n, &m);
int i, j;
int u, v, w;
node cur;
for(i=; i<=n; i++)
q[i].clear(); for(i=; i<m; i++)
{
scanf("%d %d %d", &u, &v, &w);
cur.v=v; cur.w=w;
q[u].push_back(cur);
cur.v=u;
q[v].push_back(cur); //建立双向边
}
queue_prim();
printf("%lld\n", ans );
return ;
}

Prim算法堆优化的更多相关文章

  1. hiho一下 第二十九周 最小生成树三·堆优化的Prim算法【14年寒假弄了好长时间没搞懂的prim优化:prim算法+堆优化 】

    题目1 : 最小生成树三·堆优化的Prim算法 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 回到两个星期之前,在成功的使用Kruscal算法解决了问题之后,小Ho产生 ...

  2. 求最小生成树(暴力法,prim,prim的堆优化,kruskal)

    求最小生成树(暴力法,prim,prim的堆优化,kruskal) 5 71 2 22 5 21 3 41 4 73 4 12 3 13 5 6 我们采用的是dfs的回溯暴力,所以对于如下图,只能搜索 ...

  3. 最短路模板(Dijkstra & Dijkstra算法+堆优化 & bellman_ford & 单源最短路SPFA)

    关于几个的区别和联系:http://www.cnblogs.com/zswbky/p/5432353.html d.每组的第一行是三个整数T,S和D,表示有T条路,和草儿家相邻的城市的有S个(草儿家到 ...

  4. 图论——最小生成树:Prim算法及优化、Kruskal算法,及时间复杂度比较

    最小生成树: 一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的最少的边.简单来说就是有且仅有n个点n-1条边的连通图. 而最小生成树就是最小权 ...

  5. Dijkstra算法堆优化

    转自 https://blog.csdn.net/qq_41754350/article/details/83210517 再求单源最短路径时,算法有优劣之分,个人认为在时间方面 朴素dijkstra ...

  6. Dijkstra算法堆优化详解

    DIJ算法的堆优化 DIJ算法的时间复杂度是\(O(n^2)\)的,在一些题目中,这个复杂度显然不满足要求.所以我们需要继续探讨DIJ算法的优化方式. 堆优化的原理 堆优化,顾名思义,就是用堆进行优化 ...

  7. Electrification Plan 最小生成树(prim+krusl+堆优化prim)

    题目 题意: 无向图,给n个城市,n*n条边,每条边都有一个权值 代表修路的代价,其中有k个点有发电站,给出这k个点的编号,要每一个城市都连到发电站,问最小的修路代价. 思路: prim:把发电站之间 ...

  8. 最短路-朴素版Dijkstra算法&堆优化版的Dijkstra

    朴素版Dijkstra 目标 找到从一个点到其他点的最短距离 思路 ①初始化距离dist数组,将起点dist距离设为0,其他点的距离设为无穷(就是很大的值) ②for循环遍历n次,每层循环里找出不在S ...

  9. 快速切题 poj 2485 Highways prim算法+堆 不完全优化 难度:0

    Highways Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 23033   Accepted: 10612 Descri ...

随机推荐

  1. 小程序——使用Easy Mock

    使用Easy Mock 一.什么是Easy Mock    Easy Mock 是一个可视化的能快速生成模拟数据的持久化服务.在实际开发中常见的Mock方式一般是将模拟数据直接写在代码里,利用Java ...

  2. My SQL 和SQL Server区别

    MySQL 与SQL Server区别 今天了解了二者区别,整理网上查阅资料,总结列举如下: MSSQL == SQL server 是sybase与微软合作时期的产物. 对于程序开发人员而言,目前使 ...

  3. 使用websploit在局域网全自动渗透

    原理为 websploit调用dnsdpoof进行dns欺骗配合神器metasploit的web_autopwn模块进行渗透:特点:过程基本全自动. 终端输入websploit打开websploit: ...

  4. SDOI2018R1划水记

    SDOI2018 bless all Day -1 一天无所事事……板子也不想打了 旁边的蚝爷还在不停的AC……果然自动AC机不是白叫的 "8848钛金老蚝,一上课就A题,一下课就学习,每2 ...

  5. BZOJ 4028: [HEOI2015]公约数数列 【分块 + 前缀GCD】

    任意门:https://www.lydsy.com/JudgeOnline/problem.php?id=4028 4028: [HEOI2015]公约数数列 Time Limit: 10 Sec   ...

  6. tensorflow一个很好的博客

    http://blog.csdn.net/mydear_11000/article/details/53197891

  7. java之sleep(),join(),yield(),wait(),notify()、notifyAll()区别

    1.sleep() 使当前线程(即调用该方法的线程)暂停执行一段时间,让其他线程有机会继续执行,但它并不释放对象锁.也就是说如果有synchronized同步快,其他线程仍然不能访问共享数据.注意该方 ...

  8. 提示AttributeError: 'module' object has no attribute 'HTTPSHandler'解决方法

    今天在新机器上安装sqlmap,运行提示AttributeError: 'module' object has no attribute 'HTTPSHandler' 网上找了找资料,发现一篇文章ht ...

  9. 架构风格:你真的懂REST吗?

    本文探讨如下几个问题: 什么是REST REST包含哪些约束 什么是RESTful 纯RESTful API的难点在哪里 如果你去搜索「什么是REST」的话,大部分情况下,你看到的基本都是RESTfu ...

  10. python 输入一个整数,判断其是否既是3的倍数,又是5的倍数

    v = int(input('请输入一个整数:')) if v % 3 == 0 and v % 5 ==0: print(v,'即是3的倍数又是5的倍数') else: print('不是3或5的倍 ...