#include "bits/stdc++.h"
using namespace std;
#define LL long long
#define INF 0x3f3f3f3f3f
#define PI acos(-1)
#define N 510
#define MOD 10
LL quickPow(LL a,LL b)
{
LL ans=;
while(b>){
if(b&){
ans=ans*a%MOD;
}
b>>=;
a=a*a%MOD;
}
return ans;
}
int main()
{
int n,k;
while(~scanf("%d",&n)){
printf("%lld\n",quickPow(n,n));
}
return ;
}

51Nod 1004 n^n末尾数字 | 快速幂的更多相关文章

  1. 51nod 1835 - 完全图 - [dp][组合数公式][快速幂]

    题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1835 基准时间限制:1 秒 空间限制:131072 KB   ...

  2. 51Nod 1004 n^n的末位数字(日常复习快速幂,莫名的有毒,卡mod值)

    1004 n^n的末位数字 题目来源: Author Ignatius.L (Hdu 1061) 基准时间限制:1 秒 空间限制:131072 KB 分值: 5 难度:1级算法题 给出一个整数N,输出 ...

  3. 51nod 1004 【快速幂】

    思路: 掐住最后一位,快速幂一发就好了 #include<cstdio> #include <map> #include<iostream> #include< ...

  4. 51nod 1113 矩阵快速幂

    题目链接:51nod 1113 矩阵快速幂 模板题,学习下. #include<cstdio> #include<cmath> #include<cstring> ...

  5. 51nod 1126 矩阵快速幂 水

    有一个序列是这样定义的:f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7. 给出A,B和N,求f(n)的值. Input 输 ...

  6. 51nod 1013快速幂 + 费马小定理

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1013 这是一个等比数列,所以先用求和公式,然后和3^(n+1)有关,有n ...

  7. 51Nod 1046 A^B Mod C(日常复习快速幂)

    1046 A^B Mod C 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 给出3个正整数A B C,求A^B Mod C. 例如,3 5 8,3^5 Mod 8 = ...

  8. ACM程序设计选修课——1024: 末位零(求末尾0的方法+可有可无的快速幂)

    1024: 末位零 Time Limit: 1 Sec  Memory Limit: 32 MB Submit: 60  Solved: 11 [Submit][Status][Web Board] ...

  9. 51nod 1013 3的幂的和 - 快速幂&除法取模

    题目地址:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1013 Konwledge Point: 快速幂:https:/ ...

随机推荐

  1. Python3 数据类型-字典

    字典是一种可变数据类型,且可存储任意类型对象. 字典使用大括号"{}"括起来,由键(key)和值(values)组成,键只能使用不可变类型定义,值可以使用可变类型{'键':'值'} ...

  2. nodejs笔记--模块篇(三)

    文件模块访问方式通过require('/文件名.后缀')    require('./文件名.后缀')    requrie('../文件名.后缀') 去访问,文件后缀可以省略:以"/&qu ...

  3. python正则表达式函数match()和search()的区别详解

    match()和search()都是python中的正则匹配函数,那这两个函数有何区别呢? match()函数只检测RE是不是在string的开始位置匹配, search()会扫描整个string查找 ...

  4. Web后台任务处理

    文章:.NET Core开源组件:后台任务利器之Hangfire Hangfire官网介绍:在.NET和.NET Core应用程序中执行后台处理的简便方法.无需Windows服务或单独的过程. 以持久 ...

  5. 团队作业7——第二次项目冲刺(Beta版本)-第一篇

    1.当天站立式会议照片: 2.工作分工: 团队成员 分工 郭达22120 项目整合,后台代码 刘德培44060 数据库模块后台连接 石浩洋22061 前台界面优化 曾繁钦22056 前台界面优化.测试 ...

  6. 《剑指offer》---跳台阶问题

    本文算法使用python3实现 1. 问题1 1.1 题目描述:   一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法.   时间限制:1s:空间限制:3276 ...

  7. TCP系列15—重传—5、Linux中RTO的计算

    之前我们介绍的都是协议中给出的RTO计算方法,下面我们看一下linux实现中RTO的计算方法.在linux中维护了srtt.mdev.mdev_max.rttvar.rtt_seq几个状态变量用来计算 ...

  8. delphi7中 OnDrawColumnCell 事件怎么用

    你问的这个事件应该是dbgrid控件中的吧?这个事件是在grid控件载入数据的时候触发的,至于你这个“怎么用”波及的范围太大了,呵呵!不知道如何说起!另外还是发一段相关的代码吧,这也是我之前提过问题, ...

  9. 【hdu3555】Bomb 数位dp

    题目描述 求 1~N 内包含数位串 “49” 的数的个数. 输入 The first line of input consists of an integer T (1 <= T <= 1 ...

  10. 【bzoj2588】Spoj 10628. Count on a tree 离散化+主席树

    题目描述 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第K小的点权.其中lastans是上一个询问的答案,初始为0,即第一个 ...