It's not a Bug, It's a Feature!
Time Limit: 5000MS   Memory Limit: 30000K
Total Submissions: 1428   Accepted: 557

Description

It is a curious fact that consumers buying a new software product generally do not expect the software to be bug-free. Can you imagine buying a car whose steering wheel only turns to the right? Or a CD-player that plays only CDs with country music on them? Probably not. But for software systems it seems to be acceptable if they do not perform as they should do. In fact, many software companies have adopted the habit of sending out patches to fix bugs every few weeks after a new product is released (and even charging money for the patches). 
Tinyware Inc. is one of those companies. After releasing a new word processing software this summer, they have been producing patches ever since. Only this weekend they have realized a big problem with the patches they released. While all patches fix some bugs, they often rely on other bugs to be present to be installed. This happens because to fix one bug, the patches exploit the special behavior of the program due to another bug.

More formally, the situation looks like this. Tinyware has found a total of n bugs B = {b1, b2, ..., bn} in their software. And they have released m patches p1, p2, ..., pm. To apply patch pi to the software, the bugs Bi+ in B have to be present in the software, and the bugs Bi- in B must be absent (of course Bi+ ∩ Bi- = Φ). The patch then fixes the bugs Fi- in B (if they have been present) and introduces the new bugs Fi+ in B (where, again, Fi+ ∩ Fi- = Φ).

Tinyware's problem is a simple one. Given the original version of their software, which contains all the bugs in B, it is possible to apply a sequence of patches to the software which results in a bug- free version of the software? And if so, assuming that every patch takes a certain time to apply, how long does the fastest sequence take?

Input

The input contains several product descriptions. Each description starts with a line containing two integers n and m, the number of bugs and patches, respectively. These values satisfy 1 <= n <= 20 and 1 <= m <= 100. This is followed by m lines describing the m patches in order. Each line contains an integer, the time in seconds it takes to apply the patch, and two strings of n characters each.

The first of these strings describes the bugs that have to be present or absent before the patch can be applied. The i-th position of that string is a ``+'' if bug bi has to be present, a ``-'' if bug bi has to be absent, and a `` 0'' if it doesn't matter whether the bug is present or not.

The second string describes which bugs are fixed and introduced by the patch. The i-th position of that string is a ``+'' if bug bi is introduced by the patch, a ``-'' if bug bi is removed by the patch (if it was present), and a ``0'' if bug bi is not affected by the patch (if it was present before, it still is, if it wasn't, is still isn't).

The input is terminated by a description starting with n = m = 0. This test case should not be processed.

Output

For each product description first output the number of the product. Then output whether there is a sequence of patches that removes all bugs from a product that has all n bugs. Note that in such a sequence a patch may be used multiple times. If there is such a sequence, output the time taken by the fastest sequence in the format shown in the sample output. If there is no such sequence, output ``Bugs cannot be fixed.''.

Print a blank line after each test case.

Sample Input

3 3
1 000 00-
1 00- 0-+
2 0-- -++
4 1
7 0-0+ ----
0 0

Sample Output

Product 1
Fastest sequence takes 8 seconds. Product 2
Bugs cannot be fixed.

Source

题意:补丁在修正bug时,有时也会引入新的bug。假定有n个潜在的bug m个补丁,每个补丁用两个长度为n的字符串表示,其中字符串的每个位置表示一个bug,第一个串表示打补丁之前的状态('-'表示该bug必须不存在,’+‘表示必须存在,0表示无所谓,第二个串表示打补丁之后的状态(-'表示不存在,’+‘表示存在,0表示不变)。每个补丁都有一个执行时间,你的任务使用最少的时间把一个bug都存在的软件通过打补丁的方式变得没有bug。一个补丁可以打多次。

代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define N (1<<20)
const int maxq=N+;
int q[N+],f[N+],ha[N+],vis[N+],w[],pre[][],fixed[][];
int n,m,maxn,cas=;
char s1[],s2[];
void cook_the_raw(int i){
pre[i][]=pre[i][]=fixed[i][]=;
fixed[i][]=maxn;
for(int j=;j<n;j++){
if(s1[j]=='+') pre[i][]+=<<j;//pre[i][1]某位为1表示patch[i]apply条件要求该漏洞
else if(s1[j]=='-') pre[i][]+=<<j;//pre[i][0]某位为1表示patch[i]apply条件要求无该漏洞
if(s2[j]=='+') fixed[i][]+=<<j;//fixed[i][1]某位为1表示apply后得到该漏洞
else if(s2[j]=='-') fixed[i][] -=<<j;//fixed[i][0]某位为0表示apply后修复该漏洞
}
}
void bfs(){
int head,tail;
head=tail=;
q[tail++]=maxn;
vis[maxn]=true;
while(head!=tail){
int u=q[head++];
if(head==maxq) return ;
for(int i=;i<m;i++){
if(((u&pre[i][])==pre[i][])&&((u&pre[i][])==)){//满足patch[i]apply条件
int v=(u|fixed[i][])&fixed[i][];//转移到的状态
if(ha[v]!=cas||f[v]>f[u]+w[i]){
f[v]=f[u]+w[i];ha[v]=cas;
if(!vis[v]){
q[tail++]=v;
if(tail==maxq) return ;
vis[v]=;
}
}
}
}
vis[u]=;
}
}
int main()
{
while(scanf("%d%d",&n,&m)&&n+m){
cas++;
maxn=(<<n)-;
f[maxn]=;ha[maxn]=cas;
for(int i=;i<m;i++){
scanf("%d %s %s",&w[i],s1,s2);
cook_the_raw(i);
}
bfs();
printf("Product %d\n",cas);
if(ha[]!=cas) printf("Bugs cannot be fixed.\n\n");
else printf("Fastest sequence takes %d seconds.\n\n",f[]);
}
return ;
}

Poj1482的更多相关文章

  1. poj分类 很好很有层次感。

    初期: 一.基本算法:      (1)枚举. (poj1753,poj2965)      (2)贪心(poj1328,poj2109,poj2586)      (3)递归和分治法.      ( ...

  2. 【转】POJ题目分类推荐 (很好很有层次感)

    OJ上的一些水题(可用来练手和增加自信) (poj3299,poj2159,poj2739,poj1083,poj2262,poj1503,poj3006,poj2255,poj3094)初期: 一. ...

  3. 【转】ACM训练计划

    [转] POJ推荐50题以及ACM训练方案 -- : 转载自 wade_wang 最终编辑 000lzl POJ 推荐50题 第一类 动态规划(至少6题, 和 必做) 和 (可贪心) (稍难) 第二类 ...

  4. POJ 题目分类(转载)

    Log 2016-3-21 网上找的POJ分类,来源已经不清楚了.百度能百度到一大把.贴一份在博客上,鞭策自己刷题,不能偷懒!! 初期: 一.基本算法: (1)枚举. (poj1753,poj2965 ...

  5. (转)POJ题目分类

    初期:一.基本算法:     (1)枚举. (poj1753,poj2965)     (2)贪心(poj1328,poj2109,poj2586)     (3)递归和分治法.     (4)递推. ...

  6. acm常见算法及例题

    转自:http://blog.csdn.net/hengjie2009/article/details/7540135 acm常见算法及例题  初期:一.基本算法:     (1)枚举. (poj17 ...

  7. poj分类

    初期: 一.基本算法:      (1)枚举. (poj1753,poj2965)      (2)贪心(poj1328,poj2109,poj2586)      (3)递归和分治法.      ( ...

  8. 转载 ACM训练计划

    leetcode代码 利用堆栈:http://oj.leetcode.com/problems/evaluate-reverse-polish-notation/http://oj.leetcode. ...

  9. ACM算法总结及刷题参考

    参考:http://bbs.byr.cn/#!article/ACM_ICPC/11777 OJ上的一些水题(可用来练手和增加自信)(poj3299,poj2159,poj2739,poj1083,p ...

随机推荐

  1. j2ee高并发时使用全局变量需要注意的问题

    原文:https://blog.csdn.net/jston_learn/article/details/21617311 开发中,全局变量的使用很频繁,但对于多线程的访问,使用全局变量需要注意的地方 ...

  2. Windows 10 KMS 激活方法

    本篇文章由:http://xinpure.com/windows-10-activate-method/ 摘抄: http://www.nruan.com/win-key.html 须知:如果需要在线 ...

  3. 几种TCP连接中出现RST的情况(转载)

    TCP RST 网络 linux 目录[-] 1 端口未打开 2 请求超时 3 提前关闭 4 在一个已关闭的socket上收到数据 总结 参考文献: 应该没有人会质疑,现在是一个网络时代了.应该不少程 ...

  4. MySQL主从(MySQL proxy Lua读写分离设置,一主多从同步配置,分库分表方案)

    Mysql Proxy Lua读写分离设置 一.读写分离说明 读写分离(Read/Write Splitting),基本的原理是让主数据库处理事务性增.改.删操作(INSERT.UPDATE.DELE ...

  5. php对二维数据进行排序

    PHP一维数组的排序可以用sort(),asort(),arsort()等函数,但是PHP二维数组的排序需要自定义. 方法一:(经验证,成功)   作用:对二维数组进行指定key排序 参数:$arr ...

  6. requests.exceptions.MissingSchema: Invalid URL 'xxxxxxxxxxxxx': No schema supplied. Perhaps you meant xxxxxxxxxxxxx

    import requests session = requests.session() carProposalUrl = "www.caaaa.com.cn/aaaa/aaaaa/carP ...

  7. nekohtml转换html时标签变大写的问题

    public static Document transferByNeko(InputStream stream, String charset) { if (stream == null) retu ...

  8. HR问“预期薪资是多少”,这么说能加薪zz

    每年过完节,收好上一年的年终奖,身边人就开始蠢蠢欲动,招聘市场也异常火爆,节前各种裁员的新闻,过了个节都变成了“我们还要继续招人”. 年景不好,人才更是成了紧俏货.可现实中,我却发现,优质的人才未必能 ...

  9. [k8s]k8s-web-terminal配置使用 & etcdui etcd browser配置 & etcdkeeper3配置

    安装kube-dns后,我想看看他是怎么个配置,于是我就找到了这个 参考: https://github.com/beyondblog/k8s-web-terminal cat >> /e ...

  10. Linux命令之rename

    一.引言 今天才知道Linux下的rename有两个版本,util-linux工具集的rename和Perl版本的rename,而两者的用法是明显不一样的,Perl版rename相对比较强大 二.对比 ...