Description

The children's game Hotter Colder is played as follows. Player A leaves the room while player B hides an object somewhere in the room. Player A re-enters at position (0,0) and then visits various other positions about the room. When player A visits a new position, player B announces "Hotter" if this position is closer to the object than the previous position; player B announces "Colder" if it is farther and "Same" if it is the same distance.

Input

Input consists of up to 50 lines, each containing an x,y coordinate pair followed by "Hotter", "Colder", or "Same". Each pair represents a position within the room, which may be assumed to be a square with opposite corners at (0,0) and (10,10).

Output

For each line of input print a line giving the total area of the region in which the object may have been placed, to 2 decimal places. If there is no such region, output 0.00.
 
题目大意:在一个大小为10*10,左下角为(0,0)的正方形上有一个位置不明的物体。初始点的(0,0),每次选择一个点,如果这个点比前一个的点离不明物体近了,就是Hotter,远了就是Colder,一样就是Same。问不明物体可能出现的面积有多大。
思路:初始化4个半平面为10*10的正方形的四条边向内的半平面。每一次询问,可以得到一个半平面(对于这个半平面的选择,可以让当前点与前一个点绕他们的中点旋转90度得到)。那么这些半平面的面积交就是答案。由于数据比较小,每次询问都求一次半平面交问题也不是很大。
 
代码(0MS):
 #include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std; const int MAXN = ;
const double EPS = 1e-;
const double PI = acos(-1.0);//3.14159265358979323846 inline int sgn(double x) {
return (x > EPS) - (x < -EPS);
} struct Point {
double x, y, ag;
Point() {}
Point(double x, double y): x(x), y(y) {}
void read() {
scanf("%lf%lf", &x, &y);
}
bool operator == (const Point &rhs) const {
return sgn(x - rhs.x) == && sgn(y - rhs.y) == ;
}
bool operator < (const Point &rhs) const {
if(y != rhs.y) return y < rhs.y;
return x < rhs.x;
}
Point operator + (const Point &rhs) const {
return Point(x + rhs.x, y + rhs.y);
}
Point operator - (const Point &rhs) const {
return Point(x - rhs.x, y - rhs.y);
}
Point operator * (const int &b) const {
return Point(x * b, y * b);
}
Point operator / (const int &b) const {
return Point(x / b, y / b);
}
double length() const {
return sqrt(x * x + y * y);
}
Point unit() const {
return *this / length();
}
};
typedef Point Vector; double dist(const Point &a, const Point &b) {
return (a - b).length();
} double cross(const Point &a, const Point &b) {
return a.x * b.y - a.y * b.x;
}
//ret >= 0 means turn left
double cross(const Point &sp, const Point &ed, const Point &op) {
return sgn(cross(sp - op, ed - op));
} double area(const Point& a, const Point &b, const Point &c) {
return fabs(cross(a - c, b - c)) / ;
}
//counter-clockwise
Point rotate(const Point &p, double angle, const Point &o = Point(, )) {
Point t = p - o;
double x = t.x * cos(angle) - t.y * sin(angle);
double y = t.y * cos(angle) + t.x * sin(angle);
return Point(x, y) + o;
} struct Seg {
Point st, ed;
double ag;
Seg() {}
Seg(Point st, Point ed): st(st), ed(ed) {}
void read() {
st.read(); ed.read();
}
void makeAg() {
ag = atan2(ed.y - st.y, ed.x - st.x);
}
};
typedef Seg Line; void moveRight(Line &v, double r) {
double dx = v.ed.x - v.st.x, dy = v.ed.y - v.st.y;
dx = dx / dist(v.st, v.ed) * r;
dy = dy / dist(v.st, v.ed) * r;
v.st.x += dy; v.ed.x += dy;
v.st.y -= dx; v.ed.y -= dx;
} bool isOnSeg(const Seg &s, const Point &p) {
return (p == s.st || p == s.ed) ||
(((p.x - s.st.x) * (p.x - s.ed.x) < ||
(p.y - s.st.y) * (p.y - s.ed.y) < ) &&
sgn(cross(s.ed, p, s.st) == ));
} bool isIntersected(const Point &s1, const Point &e1, const Point &s2, const Point &e2) {
return (max(s1.x, e1.x) >= min(s2.x, e2.x)) &&
(max(s2.x, e2.x) >= min(s1.x, e1.x)) &&
(max(s1.y, e1.y) >= min(s2.y, e2.y)) &&
(max(s2.y, e2.y) >= min(s1.y, e1.y)) &&
(cross(s2, e1, s1) * cross(e1, e2, s1) >= ) &&
(cross(s1, e2, s2) * cross(e2, e1, s2) >= );
} bool isIntersected(const Seg &a, const Seg &b) {
return isIntersected(a.st, a.ed, b.st, b.ed);
} bool isParallel(const Seg &a, const Seg &b) {
return sgn(cross(a.ed - a.st, b.ed - b.st)) == ;
} //return Ax + By + C =0 's A, B, C
void Coefficient(const Line &L, double &A, double &B, double &C) {
A = L.ed.y - L.st.y;
B = L.st.x - L.ed.x;
C = L.ed.x * L.st.y - L.st.x * L.ed.y;
}
//point of intersection
Point operator * (const Line &a, const Line &b) {
double A1, B1, C1;
double A2, B2, C2;
Coefficient(a, A1, B1, C1);
Coefficient(b, A2, B2, C2);
Point I;
I.x = - (B2 * C1 - B1 * C2) / (A1 * B2 - A2 * B1);
I.y = (A2 * C1 - A1 * C2) / (A1 * B2 - A2 * B1);
return I;
} bool isEqual(const Line &a, const Line &b) {
double A1, B1, C1;
double A2, B2, C2;
Coefficient(a, A1, B1, C1);
Coefficient(b, A2, B2, C2);
return sgn(A1 * B2 - A2 * B1) == && sgn(A1 * C2 - A2 * C1) == && sgn(B1 * C2 - B2 * C1) == ;
} struct Poly {
int n;
Point p[MAXN];//p[n] = p[0]
void init(Point *pp, int nn) {
n = nn;
for(int i = ; i < n; ++i) p[i] = pp[i];
p[n] = p[];
}
double area() {
if(n < ) return ;
double s = p[].y * (p[n - ].x - p[].x);
for(int i = ; i < n; ++i)
s += p[i].y * (p[i - ].x - p[i + ].x);
return s / ;
}
}; void Graham_scan(Point *p, int n, int *stk, int &top) {//stk[0] = stk[top]
sort(p, p + n);
top = ;
stk[] = ; stk[] = ;
for(int i = ; i < n; ++i) {
while(top && cross(p[i], p[stk[top]], p[stk[top - ]]) >= ) --top;
stk[++top] = i;
}
int len = top;
stk[++top] = n - ;
for(int i = n - ; i >= ; --i) {
while(top != len && cross(p[i], p[stk[top]], p[stk[top - ]]) >= ) --top;
stk[++top] = i;
}
}
//use for half_planes_cross
bool cmpAg(const Line &a, const Line &b) {
if(sgn(a.ag - b.ag) == )
return sgn(cross(b.ed, a.st, b.st)) < ;
return a.ag < b.ag;
}
//clockwise, plane is on the right
bool half_planes_cross(Line *v, int vn, Poly &res, Line *deq) {
int i, n;
sort(v, v + vn, cmpAg);
for(i = n = ; i < vn; ++i) {
if(sgn(v[i].ag - v[i-].ag) == ) continue;
v[n++] = v[i];
}
int head = , tail = ;
deq[] = v[], deq[] = v[];
for(i = ; i < n; ++i) {
if(isParallel(deq[tail - ], deq[tail]) || isParallel(deq[head], deq[head + ]))
return false;
while(head < tail && sgn(cross(v[i].ed, deq[tail - ] * deq[tail], v[i].st)) > )
--tail;
while(head < tail && sgn(cross(v[i].ed, deq[head] * deq[head + ], v[i].st)) > )
++head;
deq[++tail] = v[i];
}
while(head < tail && sgn(cross(deq[head].ed, deq[tail - ] * deq[tail], deq[head].st)) > )
--tail;
while(head < tail && sgn(cross(deq[tail].ed, deq[head] * deq[head + ], deq[tail].st)) > )
++head;
if(tail <= head + ) return false;
res.n = ;
for(i = head; i < tail; ++i)
res.p[res.n++] = deq[i] * deq[i + ];
res.p[res.n++] = deq[head] * deq[tail];
res.n = unique(res.p, res.p + res.n) - res.p;
res.p[res.n] = res.p[];
return true;
} /*******************************************************************************************/ Poly poly;
Line line[MAXN], deq[MAXN];
char str[];
Point pre, cur;
int n; int main() {
line[n++] = Line(Point(, ), Point(, )); line[n - ].makeAg();
line[n++] = Line(Point(, ), Point(, )); line[n - ].makeAg();
line[n++] = Line(Point(, ), Point(, )); line[n - ].makeAg();
line[n++] = Line(Point(, ), Point(, )); line[n - ].makeAg();
pre = Point(, );
double x, y;
while(scanf("%lf%lf%s", &x, &y, str) != EOF) {
cur = Point(x, y);
Point mid = (cur + pre) / ;
if(strcmp(str, "Hotter")) {
Point st = rotate(pre, -PI/, mid);
Point ed = rotate(cur, -PI/, mid);
line[n++] = Line(st, ed); line[n - ].makeAg();
}
if(strcmp(str, "Colder")) {
Point st = rotate(pre, PI/, mid);
Point ed = rotate(cur, PI/, mid);
line[n++] = Line(st, ed); line[n - ].makeAg();
}
bool flag = half_planes_cross(line, n, poly, deq);
printf("%.2f\n", flag * (poly.area() + EPS));
pre = cur;
}
}

POJ 2540 Hotter Colder(半平面交)的更多相关文章

  1. poj 2540 Hotter Colder 切割多边形

    /* poj 2540 Hotter Colder 切割多边形 用两点的中垂线切割多边形,根据冷热来判断要哪一半 然后输出面积 */ #include <stdio.h> #include ...

  2. POJ 2540 Hotter Colder --半平面交

    题意: 一个(0,0)到(10,10)的矩形,目标点不定,从(0,0)开始走,如果走到新一点是"Hotter",那么意思是离目标点近了,如果是"Colder“,那么就是远 ...

  3. POJ 2540 Hotter Colder

    http://poj.org/problem?id=2540 题意:给你每次行走的路径,而且告诉你每次离一个点光源是远了还是近了,要求每次光源可能存在的位置的面积. 思路:如果出现"same ...

  4. 2018.07.03 POJ 1279Art Gallery(半平面交)

    Art Gallery Time Limit: 1000MS Memory Limit: 10000K Description The art galleries of the new and ver ...

  5. POJ 3335 Rotating Scoreboard 半平面交求核

    LINK 题意:给出一个多边形,求是否存在核. 思路:比较裸的题,要注意的是求系数和交点时的x和y坐标不要搞混...判断核的顶点数是否大于1就行了 /** @Date : 2017-07-20 19: ...

  6. POJ 1474 Video Surveillance 半平面交/多边形核是否存在

    http://poj.org/problem?id=1474 解法同POJ 1279 A一送一 缺点是还是O(n^2) ...nlogn的过几天补上... /********************* ...

  7. POJ 1279 Art Gallery 半平面交/多边形求核

    http://poj.org/problem?id=1279 顺时针给你一个多边形...求能看到所有点的面积...用半平面对所有边取交即可,模版题 这里的半平面交是O(n^2)的算法...比较逗比.. ...

  8. POJ 1279 Art Gallery 半平面交求多边形核

    第一道半平面交,只会写N^2. 将每条边化作一个不等式,ax+by+c>0,所以要固定顺序,方便求解. 半平面交其实就是对一系列的不等式组进行求解可行解. 如果某点在直线右侧,说明那个点在区域内 ...

  9. POJ 1755 Triathlon (半平面交)

    Triathlon Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 4733   Accepted: 1166 Descrip ...

随机推荐

  1. 常用Sql server 自定义函数

    /****** 对象: UserDefinedFunction [dbo].[fun_get_LowerFirst] 脚本日期: 08/04/2012 13:03:56 ******/ IF EXIS ...

  2. nuxt 优化项:禁用js的预加载

    这里有个nuxt和vue不同的地方,这个地方很有意思,官方的中文文档说得蜜汁自信 ------------------------------- In production, nuxt.js uses ...

  3. 跨域详解之-----Jsonp跨域

    一.通过jsonp跨域 在js中,我们直接用XMLHttpRequest请求不同域上的数据时,是不可以的.但是,在页面上引入不同域上的js脚本文件却是可以的,jsonp正是利用这个特性来实现的. 比如 ...

  4. ASP.NET Core获取微信订单数据

    前几天对接了一波微信的订单,分享出来 1.生成签名 根据微信要求把appid.商户号.随机数.和订单号还有商户平台的密钥拼接成一个字符串然后进行MD5加密 2.拼接请求XML 然后用拼接好的XML向微 ...

  5. Flask之app实例的参数配置

    说是app实例的配置, 实际也就是flask程序的配置 Flask 是一个非常灵活且短小精干的web框架 , 那么灵活性从什么地方体现呢? 有一个神奇的东西叫 Flask配置 , 这个东西怎么用呢? ...

  6. Currency Helper

    using System; using Microsoft.Xrm.Sdk; using Microsoft.Crm.Sdk.Messages; /// <summary> /// 货币 ...

  7. Java学习笔记二十三:Java的继承初始化顺序

    Java的继承初始化顺序 当使用继承这个特性时,程序是如何执行的: 继承的初始化顺序 1.初始化父类再初始子类 2.先执行初始化对象中属性,再执行构造方法中的初始化 当使用继承这个特性时,程序是如何执 ...

  8. HDU3394 点双连通分量

    Railway Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Sub ...

  9. SAP Odata実行命令(2)

    前言 $ skiptokenは.アプリケーションに送信されるエントリ数を制限するために使用されます. 膨大な数のエントリが要求された場合.これはパフォーマンスの向上にも役立ちます.次のリンクがアプリケ ...

  10. 为什么我要放弃javaScript数据结构与算法(第五章)—— 链表

    这一章你将会学会如何实现和使用链表这种动态的数据结构,这意味着我们可以从中任意添加或移除项,它会按需进行扩张. 本章内容 链表数据结构 向链表添加元素 从链表移除元素 使用 LinkedList 类 ...