Description

The children's game Hotter Colder is played as follows. Player A leaves the room while player B hides an object somewhere in the room. Player A re-enters at position (0,0) and then visits various other positions about the room. When player A visits a new position, player B announces "Hotter" if this position is closer to the object than the previous position; player B announces "Colder" if it is farther and "Same" if it is the same distance.

Input

Input consists of up to 50 lines, each containing an x,y coordinate pair followed by "Hotter", "Colder", or "Same". Each pair represents a position within the room, which may be assumed to be a square with opposite corners at (0,0) and (10,10).

Output

For each line of input print a line giving the total area of the region in which the object may have been placed, to 2 decimal places. If there is no such region, output 0.00.
 
题目大意:在一个大小为10*10,左下角为(0,0)的正方形上有一个位置不明的物体。初始点的(0,0),每次选择一个点,如果这个点比前一个的点离不明物体近了,就是Hotter,远了就是Colder,一样就是Same。问不明物体可能出现的面积有多大。
思路:初始化4个半平面为10*10的正方形的四条边向内的半平面。每一次询问,可以得到一个半平面(对于这个半平面的选择,可以让当前点与前一个点绕他们的中点旋转90度得到)。那么这些半平面的面积交就是答案。由于数据比较小,每次询问都求一次半平面交问题也不是很大。
 
代码(0MS):
 #include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std; const int MAXN = ;
const double EPS = 1e-;
const double PI = acos(-1.0);//3.14159265358979323846 inline int sgn(double x) {
return (x > EPS) - (x < -EPS);
} struct Point {
double x, y, ag;
Point() {}
Point(double x, double y): x(x), y(y) {}
void read() {
scanf("%lf%lf", &x, &y);
}
bool operator == (const Point &rhs) const {
return sgn(x - rhs.x) == && sgn(y - rhs.y) == ;
}
bool operator < (const Point &rhs) const {
if(y != rhs.y) return y < rhs.y;
return x < rhs.x;
}
Point operator + (const Point &rhs) const {
return Point(x + rhs.x, y + rhs.y);
}
Point operator - (const Point &rhs) const {
return Point(x - rhs.x, y - rhs.y);
}
Point operator * (const int &b) const {
return Point(x * b, y * b);
}
Point operator / (const int &b) const {
return Point(x / b, y / b);
}
double length() const {
return sqrt(x * x + y * y);
}
Point unit() const {
return *this / length();
}
};
typedef Point Vector; double dist(const Point &a, const Point &b) {
return (a - b).length();
} double cross(const Point &a, const Point &b) {
return a.x * b.y - a.y * b.x;
}
//ret >= 0 means turn left
double cross(const Point &sp, const Point &ed, const Point &op) {
return sgn(cross(sp - op, ed - op));
} double area(const Point& a, const Point &b, const Point &c) {
return fabs(cross(a - c, b - c)) / ;
}
//counter-clockwise
Point rotate(const Point &p, double angle, const Point &o = Point(, )) {
Point t = p - o;
double x = t.x * cos(angle) - t.y * sin(angle);
double y = t.y * cos(angle) + t.x * sin(angle);
return Point(x, y) + o;
} struct Seg {
Point st, ed;
double ag;
Seg() {}
Seg(Point st, Point ed): st(st), ed(ed) {}
void read() {
st.read(); ed.read();
}
void makeAg() {
ag = atan2(ed.y - st.y, ed.x - st.x);
}
};
typedef Seg Line; void moveRight(Line &v, double r) {
double dx = v.ed.x - v.st.x, dy = v.ed.y - v.st.y;
dx = dx / dist(v.st, v.ed) * r;
dy = dy / dist(v.st, v.ed) * r;
v.st.x += dy; v.ed.x += dy;
v.st.y -= dx; v.ed.y -= dx;
} bool isOnSeg(const Seg &s, const Point &p) {
return (p == s.st || p == s.ed) ||
(((p.x - s.st.x) * (p.x - s.ed.x) < ||
(p.y - s.st.y) * (p.y - s.ed.y) < ) &&
sgn(cross(s.ed, p, s.st) == ));
} bool isIntersected(const Point &s1, const Point &e1, const Point &s2, const Point &e2) {
return (max(s1.x, e1.x) >= min(s2.x, e2.x)) &&
(max(s2.x, e2.x) >= min(s1.x, e1.x)) &&
(max(s1.y, e1.y) >= min(s2.y, e2.y)) &&
(max(s2.y, e2.y) >= min(s1.y, e1.y)) &&
(cross(s2, e1, s1) * cross(e1, e2, s1) >= ) &&
(cross(s1, e2, s2) * cross(e2, e1, s2) >= );
} bool isIntersected(const Seg &a, const Seg &b) {
return isIntersected(a.st, a.ed, b.st, b.ed);
} bool isParallel(const Seg &a, const Seg &b) {
return sgn(cross(a.ed - a.st, b.ed - b.st)) == ;
} //return Ax + By + C =0 's A, B, C
void Coefficient(const Line &L, double &A, double &B, double &C) {
A = L.ed.y - L.st.y;
B = L.st.x - L.ed.x;
C = L.ed.x * L.st.y - L.st.x * L.ed.y;
}
//point of intersection
Point operator * (const Line &a, const Line &b) {
double A1, B1, C1;
double A2, B2, C2;
Coefficient(a, A1, B1, C1);
Coefficient(b, A2, B2, C2);
Point I;
I.x = - (B2 * C1 - B1 * C2) / (A1 * B2 - A2 * B1);
I.y = (A2 * C1 - A1 * C2) / (A1 * B2 - A2 * B1);
return I;
} bool isEqual(const Line &a, const Line &b) {
double A1, B1, C1;
double A2, B2, C2;
Coefficient(a, A1, B1, C1);
Coefficient(b, A2, B2, C2);
return sgn(A1 * B2 - A2 * B1) == && sgn(A1 * C2 - A2 * C1) == && sgn(B1 * C2 - B2 * C1) == ;
} struct Poly {
int n;
Point p[MAXN];//p[n] = p[0]
void init(Point *pp, int nn) {
n = nn;
for(int i = ; i < n; ++i) p[i] = pp[i];
p[n] = p[];
}
double area() {
if(n < ) return ;
double s = p[].y * (p[n - ].x - p[].x);
for(int i = ; i < n; ++i)
s += p[i].y * (p[i - ].x - p[i + ].x);
return s / ;
}
}; void Graham_scan(Point *p, int n, int *stk, int &top) {//stk[0] = stk[top]
sort(p, p + n);
top = ;
stk[] = ; stk[] = ;
for(int i = ; i < n; ++i) {
while(top && cross(p[i], p[stk[top]], p[stk[top - ]]) >= ) --top;
stk[++top] = i;
}
int len = top;
stk[++top] = n - ;
for(int i = n - ; i >= ; --i) {
while(top != len && cross(p[i], p[stk[top]], p[stk[top - ]]) >= ) --top;
stk[++top] = i;
}
}
//use for half_planes_cross
bool cmpAg(const Line &a, const Line &b) {
if(sgn(a.ag - b.ag) == )
return sgn(cross(b.ed, a.st, b.st)) < ;
return a.ag < b.ag;
}
//clockwise, plane is on the right
bool half_planes_cross(Line *v, int vn, Poly &res, Line *deq) {
int i, n;
sort(v, v + vn, cmpAg);
for(i = n = ; i < vn; ++i) {
if(sgn(v[i].ag - v[i-].ag) == ) continue;
v[n++] = v[i];
}
int head = , tail = ;
deq[] = v[], deq[] = v[];
for(i = ; i < n; ++i) {
if(isParallel(deq[tail - ], deq[tail]) || isParallel(deq[head], deq[head + ]))
return false;
while(head < tail && sgn(cross(v[i].ed, deq[tail - ] * deq[tail], v[i].st)) > )
--tail;
while(head < tail && sgn(cross(v[i].ed, deq[head] * deq[head + ], v[i].st)) > )
++head;
deq[++tail] = v[i];
}
while(head < tail && sgn(cross(deq[head].ed, deq[tail - ] * deq[tail], deq[head].st)) > )
--tail;
while(head < tail && sgn(cross(deq[tail].ed, deq[head] * deq[head + ], deq[tail].st)) > )
++head;
if(tail <= head + ) return false;
res.n = ;
for(i = head; i < tail; ++i)
res.p[res.n++] = deq[i] * deq[i + ];
res.p[res.n++] = deq[head] * deq[tail];
res.n = unique(res.p, res.p + res.n) - res.p;
res.p[res.n] = res.p[];
return true;
} /*******************************************************************************************/ Poly poly;
Line line[MAXN], deq[MAXN];
char str[];
Point pre, cur;
int n; int main() {
line[n++] = Line(Point(, ), Point(, )); line[n - ].makeAg();
line[n++] = Line(Point(, ), Point(, )); line[n - ].makeAg();
line[n++] = Line(Point(, ), Point(, )); line[n - ].makeAg();
line[n++] = Line(Point(, ), Point(, )); line[n - ].makeAg();
pre = Point(, );
double x, y;
while(scanf("%lf%lf%s", &x, &y, str) != EOF) {
cur = Point(x, y);
Point mid = (cur + pre) / ;
if(strcmp(str, "Hotter")) {
Point st = rotate(pre, -PI/, mid);
Point ed = rotate(cur, -PI/, mid);
line[n++] = Line(st, ed); line[n - ].makeAg();
}
if(strcmp(str, "Colder")) {
Point st = rotate(pre, PI/, mid);
Point ed = rotate(cur, PI/, mid);
line[n++] = Line(st, ed); line[n - ].makeAg();
}
bool flag = half_planes_cross(line, n, poly, deq);
printf("%.2f\n", flag * (poly.area() + EPS));
pre = cur;
}
}

POJ 2540 Hotter Colder(半平面交)的更多相关文章

  1. poj 2540 Hotter Colder 切割多边形

    /* poj 2540 Hotter Colder 切割多边形 用两点的中垂线切割多边形,根据冷热来判断要哪一半 然后输出面积 */ #include <stdio.h> #include ...

  2. POJ 2540 Hotter Colder --半平面交

    题意: 一个(0,0)到(10,10)的矩形,目标点不定,从(0,0)开始走,如果走到新一点是"Hotter",那么意思是离目标点近了,如果是"Colder“,那么就是远 ...

  3. POJ 2540 Hotter Colder

    http://poj.org/problem?id=2540 题意:给你每次行走的路径,而且告诉你每次离一个点光源是远了还是近了,要求每次光源可能存在的位置的面积. 思路:如果出现"same ...

  4. 2018.07.03 POJ 1279Art Gallery(半平面交)

    Art Gallery Time Limit: 1000MS Memory Limit: 10000K Description The art galleries of the new and ver ...

  5. POJ 3335 Rotating Scoreboard 半平面交求核

    LINK 题意:给出一个多边形,求是否存在核. 思路:比较裸的题,要注意的是求系数和交点时的x和y坐标不要搞混...判断核的顶点数是否大于1就行了 /** @Date : 2017-07-20 19: ...

  6. POJ 1474 Video Surveillance 半平面交/多边形核是否存在

    http://poj.org/problem?id=1474 解法同POJ 1279 A一送一 缺点是还是O(n^2) ...nlogn的过几天补上... /********************* ...

  7. POJ 1279 Art Gallery 半平面交/多边形求核

    http://poj.org/problem?id=1279 顺时针给你一个多边形...求能看到所有点的面积...用半平面对所有边取交即可,模版题 这里的半平面交是O(n^2)的算法...比较逗比.. ...

  8. POJ 1279 Art Gallery 半平面交求多边形核

    第一道半平面交,只会写N^2. 将每条边化作一个不等式,ax+by+c>0,所以要固定顺序,方便求解. 半平面交其实就是对一系列的不等式组进行求解可行解. 如果某点在直线右侧,说明那个点在区域内 ...

  9. POJ 1755 Triathlon (半平面交)

    Triathlon Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 4733   Accepted: 1166 Descrip ...

随机推荐

  1. java 计算器算法脚本

    import javax.script.ScriptEngine; import javax.script.ScriptEngineManager; public String Count(Strin ...

  2. memcache和redis的区别和联系

    一.区别 Memcache : 1,对每个key的数据最大是1M. 2,对各种技术支持比较全面,session可以存储memcache中,各种框架(例如thinkphp)对memcache支持比较好. ...

  3. Jquery之倒计时计算

      setInterval(); function setDate(setTime){ var date = new Date();//获取系统当前时间 )+)+"-"+date. ...

  4. C# IL DASM 使用-破解c#软件方法

    IL DASM反编译工具 使用C#的猿人或多或少都会对微软的IL反编译工具(ildasm.exe)有所认识.我最早接触到这工具是公司同事使用他反编译exe程序,进行研读和修改.感觉他还是很强大. IL ...

  5. BugkuWeb本地包含

    知识点:$_REQUEST不是一个函数,它是一个超全局变量,里面包括有$_GET $_POST $_COOKIE的值,$_REPUEST 是接收了 $_GET $_POST $_COOKIE 三个的集 ...

  6. Python交换两个变量值的函数

    方法1:(错误) def func(a,b): a,b = b,a a = 1 b = 2 func(a,b) print(a," ",b) 方法2:(正确) def func(a ...

  7. (转)service apache2 restart失败

    https://askubuntu.com/questions/431925/how-to-restart-apache2-when-i-get-a-pid-conflict sudo kill -9 ...

  8. angularjs transitions

    http://angular-transitions.mgechev.com/#/view/page1 https://scotch.io/tutorials http://stackoverflow ...

  9. OI生涯回忆录(一)

    OI生涯彻底结束了(难道不是早就结束了),有些东西不写可能就忘了,还是记录一下一些回忆叭.比较墨迹所以可能就连载了. (一)高一开学到NOIP2016 最开始就是觉得信息(计算机)竞赛可能会很有意思就 ...

  10. 成都优步uber司机第一组与第二组的区别

    成都优步uber司机被分成了两组,两组的奖励方式不相同,下面我们先来看看官方给出的奖励方式: 滴滴快车单单2.5倍,注册地址:http://www.udache.com/如何注册Uber司机(全国版最 ...