POJ 2540 Hotter Colder(半平面交)
Description
Input
Output
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std; const int MAXN = ;
const double EPS = 1e-;
const double PI = acos(-1.0);//3.14159265358979323846 inline int sgn(double x) {
return (x > EPS) - (x < -EPS);
} struct Point {
double x, y, ag;
Point() {}
Point(double x, double y): x(x), y(y) {}
void read() {
scanf("%lf%lf", &x, &y);
}
bool operator == (const Point &rhs) const {
return sgn(x - rhs.x) == && sgn(y - rhs.y) == ;
}
bool operator < (const Point &rhs) const {
if(y != rhs.y) return y < rhs.y;
return x < rhs.x;
}
Point operator + (const Point &rhs) const {
return Point(x + rhs.x, y + rhs.y);
}
Point operator - (const Point &rhs) const {
return Point(x - rhs.x, y - rhs.y);
}
Point operator * (const int &b) const {
return Point(x * b, y * b);
}
Point operator / (const int &b) const {
return Point(x / b, y / b);
}
double length() const {
return sqrt(x * x + y * y);
}
Point unit() const {
return *this / length();
}
};
typedef Point Vector; double dist(const Point &a, const Point &b) {
return (a - b).length();
} double cross(const Point &a, const Point &b) {
return a.x * b.y - a.y * b.x;
}
//ret >= 0 means turn left
double cross(const Point &sp, const Point &ed, const Point &op) {
return sgn(cross(sp - op, ed - op));
} double area(const Point& a, const Point &b, const Point &c) {
return fabs(cross(a - c, b - c)) / ;
}
//counter-clockwise
Point rotate(const Point &p, double angle, const Point &o = Point(, )) {
Point t = p - o;
double x = t.x * cos(angle) - t.y * sin(angle);
double y = t.y * cos(angle) + t.x * sin(angle);
return Point(x, y) + o;
} struct Seg {
Point st, ed;
double ag;
Seg() {}
Seg(Point st, Point ed): st(st), ed(ed) {}
void read() {
st.read(); ed.read();
}
void makeAg() {
ag = atan2(ed.y - st.y, ed.x - st.x);
}
};
typedef Seg Line; void moveRight(Line &v, double r) {
double dx = v.ed.x - v.st.x, dy = v.ed.y - v.st.y;
dx = dx / dist(v.st, v.ed) * r;
dy = dy / dist(v.st, v.ed) * r;
v.st.x += dy; v.ed.x += dy;
v.st.y -= dx; v.ed.y -= dx;
} bool isOnSeg(const Seg &s, const Point &p) {
return (p == s.st || p == s.ed) ||
(((p.x - s.st.x) * (p.x - s.ed.x) < ||
(p.y - s.st.y) * (p.y - s.ed.y) < ) &&
sgn(cross(s.ed, p, s.st) == ));
} bool isIntersected(const Point &s1, const Point &e1, const Point &s2, const Point &e2) {
return (max(s1.x, e1.x) >= min(s2.x, e2.x)) &&
(max(s2.x, e2.x) >= min(s1.x, e1.x)) &&
(max(s1.y, e1.y) >= min(s2.y, e2.y)) &&
(max(s2.y, e2.y) >= min(s1.y, e1.y)) &&
(cross(s2, e1, s1) * cross(e1, e2, s1) >= ) &&
(cross(s1, e2, s2) * cross(e2, e1, s2) >= );
} bool isIntersected(const Seg &a, const Seg &b) {
return isIntersected(a.st, a.ed, b.st, b.ed);
} bool isParallel(const Seg &a, const Seg &b) {
return sgn(cross(a.ed - a.st, b.ed - b.st)) == ;
} //return Ax + By + C =0 's A, B, C
void Coefficient(const Line &L, double &A, double &B, double &C) {
A = L.ed.y - L.st.y;
B = L.st.x - L.ed.x;
C = L.ed.x * L.st.y - L.st.x * L.ed.y;
}
//point of intersection
Point operator * (const Line &a, const Line &b) {
double A1, B1, C1;
double A2, B2, C2;
Coefficient(a, A1, B1, C1);
Coefficient(b, A2, B2, C2);
Point I;
I.x = - (B2 * C1 - B1 * C2) / (A1 * B2 - A2 * B1);
I.y = (A2 * C1 - A1 * C2) / (A1 * B2 - A2 * B1);
return I;
} bool isEqual(const Line &a, const Line &b) {
double A1, B1, C1;
double A2, B2, C2;
Coefficient(a, A1, B1, C1);
Coefficient(b, A2, B2, C2);
return sgn(A1 * B2 - A2 * B1) == && sgn(A1 * C2 - A2 * C1) == && sgn(B1 * C2 - B2 * C1) == ;
} struct Poly {
int n;
Point p[MAXN];//p[n] = p[0]
void init(Point *pp, int nn) {
n = nn;
for(int i = ; i < n; ++i) p[i] = pp[i];
p[n] = p[];
}
double area() {
if(n < ) return ;
double s = p[].y * (p[n - ].x - p[].x);
for(int i = ; i < n; ++i)
s += p[i].y * (p[i - ].x - p[i + ].x);
return s / ;
}
}; void Graham_scan(Point *p, int n, int *stk, int &top) {//stk[0] = stk[top]
sort(p, p + n);
top = ;
stk[] = ; stk[] = ;
for(int i = ; i < n; ++i) {
while(top && cross(p[i], p[stk[top]], p[stk[top - ]]) >= ) --top;
stk[++top] = i;
}
int len = top;
stk[++top] = n - ;
for(int i = n - ; i >= ; --i) {
while(top != len && cross(p[i], p[stk[top]], p[stk[top - ]]) >= ) --top;
stk[++top] = i;
}
}
//use for half_planes_cross
bool cmpAg(const Line &a, const Line &b) {
if(sgn(a.ag - b.ag) == )
return sgn(cross(b.ed, a.st, b.st)) < ;
return a.ag < b.ag;
}
//clockwise, plane is on the right
bool half_planes_cross(Line *v, int vn, Poly &res, Line *deq) {
int i, n;
sort(v, v + vn, cmpAg);
for(i = n = ; i < vn; ++i) {
if(sgn(v[i].ag - v[i-].ag) == ) continue;
v[n++] = v[i];
}
int head = , tail = ;
deq[] = v[], deq[] = v[];
for(i = ; i < n; ++i) {
if(isParallel(deq[tail - ], deq[tail]) || isParallel(deq[head], deq[head + ]))
return false;
while(head < tail && sgn(cross(v[i].ed, deq[tail - ] * deq[tail], v[i].st)) > )
--tail;
while(head < tail && sgn(cross(v[i].ed, deq[head] * deq[head + ], v[i].st)) > )
++head;
deq[++tail] = v[i];
}
while(head < tail && sgn(cross(deq[head].ed, deq[tail - ] * deq[tail], deq[head].st)) > )
--tail;
while(head < tail && sgn(cross(deq[tail].ed, deq[head] * deq[head + ], deq[tail].st)) > )
++head;
if(tail <= head + ) return false;
res.n = ;
for(i = head; i < tail; ++i)
res.p[res.n++] = deq[i] * deq[i + ];
res.p[res.n++] = deq[head] * deq[tail];
res.n = unique(res.p, res.p + res.n) - res.p;
res.p[res.n] = res.p[];
return true;
} /*******************************************************************************************/ Poly poly;
Line line[MAXN], deq[MAXN];
char str[];
Point pre, cur;
int n; int main() {
line[n++] = Line(Point(, ), Point(, )); line[n - ].makeAg();
line[n++] = Line(Point(, ), Point(, )); line[n - ].makeAg();
line[n++] = Line(Point(, ), Point(, )); line[n - ].makeAg();
line[n++] = Line(Point(, ), Point(, )); line[n - ].makeAg();
pre = Point(, );
double x, y;
while(scanf("%lf%lf%s", &x, &y, str) != EOF) {
cur = Point(x, y);
Point mid = (cur + pre) / ;
if(strcmp(str, "Hotter")) {
Point st = rotate(pre, -PI/, mid);
Point ed = rotate(cur, -PI/, mid);
line[n++] = Line(st, ed); line[n - ].makeAg();
}
if(strcmp(str, "Colder")) {
Point st = rotate(pre, PI/, mid);
Point ed = rotate(cur, PI/, mid);
line[n++] = Line(st, ed); line[n - ].makeAg();
}
bool flag = half_planes_cross(line, n, poly, deq);
printf("%.2f\n", flag * (poly.area() + EPS));
pre = cur;
}
}
POJ 2540 Hotter Colder(半平面交)的更多相关文章
- poj 2540 Hotter Colder 切割多边形
/* poj 2540 Hotter Colder 切割多边形 用两点的中垂线切割多边形,根据冷热来判断要哪一半 然后输出面积 */ #include <stdio.h> #include ...
- POJ 2540 Hotter Colder --半平面交
题意: 一个(0,0)到(10,10)的矩形,目标点不定,从(0,0)开始走,如果走到新一点是"Hotter",那么意思是离目标点近了,如果是"Colder“,那么就是远 ...
- POJ 2540 Hotter Colder
http://poj.org/problem?id=2540 题意:给你每次行走的路径,而且告诉你每次离一个点光源是远了还是近了,要求每次光源可能存在的位置的面积. 思路:如果出现"same ...
- 2018.07.03 POJ 1279Art Gallery(半平面交)
Art Gallery Time Limit: 1000MS Memory Limit: 10000K Description The art galleries of the new and ver ...
- POJ 3335 Rotating Scoreboard 半平面交求核
LINK 题意:给出一个多边形,求是否存在核. 思路:比较裸的题,要注意的是求系数和交点时的x和y坐标不要搞混...判断核的顶点数是否大于1就行了 /** @Date : 2017-07-20 19: ...
- POJ 1474 Video Surveillance 半平面交/多边形核是否存在
http://poj.org/problem?id=1474 解法同POJ 1279 A一送一 缺点是还是O(n^2) ...nlogn的过几天补上... /********************* ...
- POJ 1279 Art Gallery 半平面交/多边形求核
http://poj.org/problem?id=1279 顺时针给你一个多边形...求能看到所有点的面积...用半平面对所有边取交即可,模版题 这里的半平面交是O(n^2)的算法...比较逗比.. ...
- POJ 1279 Art Gallery 半平面交求多边形核
第一道半平面交,只会写N^2. 将每条边化作一个不等式,ax+by+c>0,所以要固定顺序,方便求解. 半平面交其实就是对一系列的不等式组进行求解可行解. 如果某点在直线右侧,说明那个点在区域内 ...
- POJ 1755 Triathlon (半平面交)
Triathlon Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 4733 Accepted: 1166 Descrip ...
随机推荐
- 模板——最小生成树kruskal算法+并查集数据结构
并查集:找祖先并更新,注意路径压缩,不然会时间复杂度巨大导致出错/超时 合并:(我的祖先是的你的祖先的父亲) 找父亲:(初始化祖先是自己的,自己就是祖先) 查询:(我们是不是同一祖先) 路径压缩:(每 ...
- chromium之task
// A task is a generic runnable thingy, usually used for running code on a // different thread or fo ...
- 深入理解bit_or和bit_and,bit_count
bit_or:二进制数按位或,bit_and:二进制数按位与,bit_count:统计二进制数1个个数 下面以一个例子来说明用法:示例要实现的功能就是计算每月有几天有访问,先把示例摘录在这里.1234 ...
- 获取当前对象的key的名称
获取当前对象的key的名称(无法获取),只能曲线救国 通过给标签添加class,id, 然后通过对class的遍历,来获取到id(这个id对应数据库的字段,所以对应对象的key) 然后再给 id 赋值 ...
- mvc 页面 去掉转义字符
mvc 页面 去掉转义字符 mvc 后台返回json数据,用ViewBag 传回前台页面,但是传到前台页面的时候,带有转义字符.一直想去掉这个转义字符,苦恼了好久. 解决方案: mvc 页面有个这 ...
- LCD驱动程序编写
学习目标:编写LCD驱动程序,熟悉根据芯片手册分析时序图,配置寄存器,并测试LCD程序. 一.LCD驱动程序编写 步骤: 1)分配fb_info结构体 2)设置fb_info结构体 a. 固定参数 b ...
- select epoll poll
如何理解 Epoll select 和 poll 三种模型,能否用生活中的例子做比喻? 比如说你从某宝下单买了几个东西,这几个东西分别由N个快递员分别给你送过来.在某一时刻,你开始等快递.对于sele ...
- 利用主成分分析(PCA)简化数据
一.PCA基础 线性映射(或线性变换),简单的来说就是将高维空间数据投影到低维空间上,那么在数据分析上,我们是将数据的主成分(包含信息量大的维度)保留下来,忽略掉对数据描述不重要的成分.即将主成分维度 ...
- 前端页面加载速度优化---Ngnix之GZIP压缩
gzip on; #开启Gzip gzip_static on;#是否开启gzip静态资源 #nginx对于静态文件的处理模块,该模块可以读取预先压缩的gz文件,这样可以减少每次请求进行gzip压缩的 ...
- 利用Python Counter快速计算出现次数topN的元素
需要用Python写一段代码,给定一堆关键词,返回出现次数最多的n个关键字. 第一反应是采用一个dict,key存储关键词,value存储出现次数,如此一次遍历即可得出所有不同关键词的出现次数,而后排 ...