理解LINUX LOAD AVERAGE的误区
一直不解,为什么io占用较高时,系统负载也会变高,偶遇此文,终解吾惑。
uptime和top等命令都可以看到load average指标,从左至右三个数字分别表示1分钟、5分钟、15分钟的load average:
$ uptime
:: up days, :, user, load average: 5.76, 5.54, 5.61
Load average的概念源自UNIX系统,虽然各家的公式不尽相同,但都是用于衡量正在使用CPU的进程数量和正在等待CPU的进程数量,一句话就是runnable processes的数量。所以load average可以作为CPU瓶颈的参考指标,如果大于CPU的数量,说明CPU可能不够用了。
但是,Linux上不是这样的!
Linux上的load average除了包括正在使用CPU的进程数量和正在等待CPU的进程数量之外,还包括uninterruptible sleep的进程数量。通常等待IO设备、等待网络的时候,进程会处于uninterruptible sleep状态。Linux设计者的逻辑是,uninterruptible sleep应该都是很短暂的,很快就会恢复运行,所以被等同于runnable。然而uninterruptible sleep即使再短暂也是sleep,何况现实世界中uninterruptible sleep未必很短暂,大量的、或长时间的uninterruptible sleep通常意味着IO设备遇到了瓶颈。众所周知,sleep状态的进程是不需要CPU的,即使所有的CPU都空闲,正在sleep的进程也是运行不了的,所以sleep进程的数量绝对不适合用作衡量CPU负载的指标,Linux把uninterruptible sleep进程算进load average的做法直接颠覆了load average的本来意义。所以在Linux系统上,load average这个指标基本失去了作用,因为你不知道它代表什么意思,当看到load average很高的时候,你不知道是runnable进程太多还是uninterruptible sleep进程太多,也就无法判断是CPU不够用还是IO设备有瓶颈。
参考资料:https://en.wikipedia.org/wiki/Load_(computing)“Most UNIX systems count only processes in the running (on CPU) or runnable (waiting for CPU) states. However, Linux also includes processes in uninterruptible sleep states (usually waiting for disk activity), which can lead to markedly different results if many processes remain blocked in I/O due to a busy or stalled I/O system.“
源代码:
RHEL6
kernel/sched.c:
=============== static void calc_load_account_active(struct rq *this_rq)
{
long nr_active, delta; nr_active = this_rq->nr_running;
nr_active += (long) this_rq->nr_uninterruptible; if (nr_active != this_rq->calc_load_active) {
delta = nr_active - this_rq->calc_load_active;
this_rq->calc_load_active = nr_active;
atomic_long_add(delta, &calc_load_tasks);
}
}
RHEL7
kernel/sched/core.c:
==================== static long calc_load_fold_active(struct rq *this_rq)
{
long nr_active, delta = ; nr_active = this_rq->nr_running;
nr_active += (long) this_rq->nr_uninterruptible; if (nr_active != this_rq->calc_load_active) {
delta = nr_active - this_rq->calc_load_active;
this_rq->calc_load_active = nr_active;
} return delta;
}
RHEL7
kernel/sched/core.c:
==================== /*
* Global load-average calculations
*
* We take a distributed and async approach to calculating the global load-avg
* in order to minimize overhead.
*
* The global load average is an exponentially decaying average of nr_running +
* nr_uninterruptible.
*
* Once every LOAD_FREQ:
*
* nr_active = 0;
* for_each_possible_cpu(cpu)
* nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
*
* avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
*
* Due to a number of reasons the above turns in the mess below:
*
* - for_each_possible_cpu() is prohibitively expensive on machines with
* serious number of cpus, therefore we need to take a distributed approach
* to calculating nr_active.
*
* \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
* = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
*
* So assuming nr_active := 0 when we start out -- true per definition, we
* can simply take per-cpu deltas and fold those into a global accumulate
* to obtain the same result. See calc_load_fold_active().
*
* Furthermore, in order to avoid synchronizing all per-cpu delta folding
* across the machine, we assume 10 ticks is sufficient time for every
* cpu to have completed this task.
*
* This places an upper-bound on the IRQ-off latency of the machine. Then
* again, being late doesn't loose the delta, just wrecks the sample.
*
* - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
* this would add another cross-cpu cacheline miss and atomic operation
* to the wakeup path. Instead we increment on whatever cpu the task ran
* when it went into uninterruptible state and decrement on whatever cpu
* did the wakeup. This means that only the sum of nr_uninterruptible over
* all cpus yields the correct result.
*
* This covers the NO_HZ=n code, for extra head-aches, see the comment below.
*/
参考:
http://linuxperf.com/?p=176
理解LINUX LOAD AVERAGE的误区的更多相关文章
- Linux load average负载量分析与解决思路
一.load average top命令中load average显示的是最近1分钟.5分钟和15分钟的系统平均负载.系统平均负载表示 系统平均负载被定义为在特定时间间隔内运行队列中(在CPU上运行或 ...
- Linux Load average负载详细解释
http://tianmaotalk.iteye.com/blog/1027970 Linux Load average负载详细解释 linux查看机器负载
- linux load average
性能分析_linux服务器CPU_Load Average 理解Linux系统中的load average(图文版) 理解Load Average做好压力测试 top命令的Load average 含 ...
- Linux CPU Load Average
理解Linux系统负荷 LINUX下CPU Load Average的一点研究 Linux load average负载量分析与解决思路 Understanding Linux CPU Load - ...
- 【转】top命令输出解释以及load average 详解及排查思路
https://blog.csdn.net/zhangchenglikecc/article/details/52103737 昨天nagios报警warning,没来得及留下报警截图,nagios值 ...
- top命令输出解释以及load average 详解及排查思路
原地址: https://blog.csdn.net/zhangchenglikecc/article/details/52103737 1.top输出以及load average 详解 昨天nagi ...
- 理解Linux系统负荷load average
理解Linux系统负荷 一.查看系统负荷 如果你的电脑很慢,你或许想查看一下,它的工作量是否太大了. 在Linux系统中,我们一般使用uptime命令查看(w命令和top命令也行).(另外,它们在 ...
- 理解Linux系统中的load average
理解Linux系统中的load average(图文版) 博客分类: Linux linux load nagios 一.什么是load average? linux系统中的Load对当前CPU工作 ...
- [转]理解Linux系统中的load average
转自:http://heipark.iteye.com/blog/1340384 谢谢,写的非常好的文章. 一.什么是load average linux系统中的Load对当前CPU工作量的度量 (W ...
随机推荐
- Request对象及常用方法
Object getAttribute(String name) 获得name的属性,若不存在,则返回null Enumeration getAttributeNames() 返回一个枚举类型的包含r ...
- 【第六章】MySQL日志文件管理
1.日志文件管理概述: 配置文件:/etc/my.cnf 作用:MySQL日志文件是用来记录MySQL数据库客户端连接情况.SQL语句的执行情况以及错误信息告示. 分类:MySQL日志文件分为4种:错 ...
- CPU设计学习-流水线
各种名词 标量流水线 超级流水线 超标量流水线与多发射技术 经典五级流水线 IF |Instruction Fetch,取指 ID |Instruction Decode,译码 EX |Execute ...
- Eclipse 安装SVN、Maven插件
1先安装subeclipse插件就是svn svn - http://subclipse.tigris.org/update_1.6.x 我这里是灰色的说明我安装过了这里只是截图说明下,我就不继续安装 ...
- 6.azkban的监控
azkaban自带的监控flow自带的邮件功能SLA总结写程序监控job情况监控azkaban的元数据库使用azkaban API监控总结 azkaban自带的监控 azkban目前仅仅支持邮件监控, ...
- Lecture Sleep(尺取+前缀和)
Description 你的朋友Mishka和你参加一个微积分讲座.讲座持续n分钟.讲师在第i分钟讲述ai个定理. 米什卡真的对微积分很感兴趣,尽管在演讲的所有时间都很难保持清醒.给你一个米什卡行 ...
- Internet History,Tecchnology and Security
Internet History Internet Technologe Internet Secure
- ACM 第十八天
数学基础(卷积,FFT,FWT,FMT,鸽巢原理,群论,哈里亚余数,哈里亚计数定理,组合数学,LVG定理,期望DP,期望点贡献问题) 练习题: A - Necklace of Beads Beads ...
- 使用WCF上传数据
通过传递Stream对象来传递大数据文件,但是有一些限制: 1.只有 BasicHttpBinding.NetTcpBinding 和 NetNamedPipeBinding 支持传送流数据. 2. ...
- 苹果ATS特性服务器配置指南 HTTPS 安卓可以用 IOS 报错。
解决方案:https://www.qcloud.com/document/product/400/6973 ATS检测:https://www.qcloud.com/product/ssl#userD ...