理解LINUX LOAD AVERAGE的误区
一直不解,为什么io占用较高时,系统负载也会变高,偶遇此文,终解吾惑。
uptime和top等命令都可以看到load average指标,从左至右三个数字分别表示1分钟、5分钟、15分钟的load average:
$ uptime
:: up days, :, user, load average: 5.76, 5.54, 5.61
Load average的概念源自UNIX系统,虽然各家的公式不尽相同,但都是用于衡量正在使用CPU的进程数量和正在等待CPU的进程数量,一句话就是runnable processes的数量。所以load average可以作为CPU瓶颈的参考指标,如果大于CPU的数量,说明CPU可能不够用了。
但是,Linux上不是这样的!
Linux上的load average除了包括正在使用CPU的进程数量和正在等待CPU的进程数量之外,还包括uninterruptible sleep的进程数量。通常等待IO设备、等待网络的时候,进程会处于uninterruptible sleep状态。Linux设计者的逻辑是,uninterruptible sleep应该都是很短暂的,很快就会恢复运行,所以被等同于runnable。然而uninterruptible sleep即使再短暂也是sleep,何况现实世界中uninterruptible sleep未必很短暂,大量的、或长时间的uninterruptible sleep通常意味着IO设备遇到了瓶颈。众所周知,sleep状态的进程是不需要CPU的,即使所有的CPU都空闲,正在sleep的进程也是运行不了的,所以sleep进程的数量绝对不适合用作衡量CPU负载的指标,Linux把uninterruptible sleep进程算进load average的做法直接颠覆了load average的本来意义。所以在Linux系统上,load average这个指标基本失去了作用,因为你不知道它代表什么意思,当看到load average很高的时候,你不知道是runnable进程太多还是uninterruptible sleep进程太多,也就无法判断是CPU不够用还是IO设备有瓶颈。
参考资料:https://en.wikipedia.org/wiki/Load_(computing)“Most UNIX systems count only processes in the running (on CPU) or runnable (waiting for CPU) states. However, Linux also includes processes in uninterruptible sleep states (usually waiting for disk activity), which can lead to markedly different results if many processes remain blocked in I/O due to a busy or stalled I/O system.“
源代码:
RHEL6
kernel/sched.c:
=============== static void calc_load_account_active(struct rq *this_rq)
{
long nr_active, delta; nr_active = this_rq->nr_running;
nr_active += (long) this_rq->nr_uninterruptible; if (nr_active != this_rq->calc_load_active) {
delta = nr_active - this_rq->calc_load_active;
this_rq->calc_load_active = nr_active;
atomic_long_add(delta, &calc_load_tasks);
}
}
RHEL7
kernel/sched/core.c:
==================== static long calc_load_fold_active(struct rq *this_rq)
{
long nr_active, delta = ; nr_active = this_rq->nr_running;
nr_active += (long) this_rq->nr_uninterruptible; if (nr_active != this_rq->calc_load_active) {
delta = nr_active - this_rq->calc_load_active;
this_rq->calc_load_active = nr_active;
} return delta;
}
RHEL7
kernel/sched/core.c:
==================== /*
* Global load-average calculations
*
* We take a distributed and async approach to calculating the global load-avg
* in order to minimize overhead.
*
* The global load average is an exponentially decaying average of nr_running +
* nr_uninterruptible.
*
* Once every LOAD_FREQ:
*
* nr_active = 0;
* for_each_possible_cpu(cpu)
* nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
*
* avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
*
* Due to a number of reasons the above turns in the mess below:
*
* - for_each_possible_cpu() is prohibitively expensive on machines with
* serious number of cpus, therefore we need to take a distributed approach
* to calculating nr_active.
*
* \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
* = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
*
* So assuming nr_active := 0 when we start out -- true per definition, we
* can simply take per-cpu deltas and fold those into a global accumulate
* to obtain the same result. See calc_load_fold_active().
*
* Furthermore, in order to avoid synchronizing all per-cpu delta folding
* across the machine, we assume 10 ticks is sufficient time for every
* cpu to have completed this task.
*
* This places an upper-bound on the IRQ-off latency of the machine. Then
* again, being late doesn't loose the delta, just wrecks the sample.
*
* - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
* this would add another cross-cpu cacheline miss and atomic operation
* to the wakeup path. Instead we increment on whatever cpu the task ran
* when it went into uninterruptible state and decrement on whatever cpu
* did the wakeup. This means that only the sum of nr_uninterruptible over
* all cpus yields the correct result.
*
* This covers the NO_HZ=n code, for extra head-aches, see the comment below.
*/
参考:
http://linuxperf.com/?p=176
理解LINUX LOAD AVERAGE的误区的更多相关文章
- Linux load average负载量分析与解决思路
一.load average top命令中load average显示的是最近1分钟.5分钟和15分钟的系统平均负载.系统平均负载表示 系统平均负载被定义为在特定时间间隔内运行队列中(在CPU上运行或 ...
- Linux Load average负载详细解释
http://tianmaotalk.iteye.com/blog/1027970 Linux Load average负载详细解释 linux查看机器负载
- linux load average
性能分析_linux服务器CPU_Load Average 理解Linux系统中的load average(图文版) 理解Load Average做好压力测试 top命令的Load average 含 ...
- Linux CPU Load Average
理解Linux系统负荷 LINUX下CPU Load Average的一点研究 Linux load average负载量分析与解决思路 Understanding Linux CPU Load - ...
- 【转】top命令输出解释以及load average 详解及排查思路
https://blog.csdn.net/zhangchenglikecc/article/details/52103737 昨天nagios报警warning,没来得及留下报警截图,nagios值 ...
- top命令输出解释以及load average 详解及排查思路
原地址: https://blog.csdn.net/zhangchenglikecc/article/details/52103737 1.top输出以及load average 详解 昨天nagi ...
- 理解Linux系统负荷load average
理解Linux系统负荷 一.查看系统负荷 如果你的电脑很慢,你或许想查看一下,它的工作量是否太大了. 在Linux系统中,我们一般使用uptime命令查看(w命令和top命令也行).(另外,它们在 ...
- 理解Linux系统中的load average
理解Linux系统中的load average(图文版) 博客分类: Linux linux load nagios 一.什么是load average? linux系统中的Load对当前CPU工作 ...
- [转]理解Linux系统中的load average
转自:http://heipark.iteye.com/blog/1340384 谢谢,写的非常好的文章. 一.什么是load average linux系统中的Load对当前CPU工作量的度量 (W ...
随机推荐
- Java开发工程师(Web方向) - 03.数据库开发 - 第3章.SQL注入与防范
第3章--SQL注入与防范 SQL注入与防范 经常遇到的问题:数据安全问题,尤其是sql注入导致的数据库的安全漏洞 国内著名漏洞曝光平台:WooYun.org 数据库泄露的风险:用户信息.交易信息的泄 ...
- 51单片机实现定时器00H-FFH、定时器000-255
#include< reg51.h> #define uint unsigned int #define uchar unsigned char sfr P0M0 = 0x94; sfr ...
- 有个AI陪你一起写代码,是种怎样的体验?| 附ICLR论文
从前,任何程序的任何功能,都需要一行一行敲出来. 后来,程序猿要写的代码越来越多,世界上便有了各种各样的API,来减少大家的工作量.有些功能,可以让API来帮我们实现. 不过,人类写下的话,API并不 ...
- UVa 1225 - Digit Counting - ACM/ICPC Danang 2007 解题报告 - C语言
1.题目大意 把前n$(n\le 10000)$个整数顺次写在一起:12345678910111213……计算0~9各出现了多少次. 2.思路 第一想法是打表,然而觉得稍微有点暴力.不过暂时没有想到更 ...
- Linux系统查看系统版本命令
以下操作在centos系统上实现,有些方式可能只适用centos/redhat版本系统 uname -a |uname -r查看内核版本信息 [root@node1 ~]# uname -a Linu ...
- CDH组件目录\主机资源分配\端口
目录: /var/log/cloudera-scm-installer : 安装日志目录. /var/log/* : 相关日志文件(相关服务的及CM的). /usr/share/cmf/ : 程序安装 ...
- POJ 2540 Hotter Colder(半平面交)
Description The children's game Hotter Colder is played as follows. Player A leaves the room while p ...
- Scrum1
Scrum1 组员 任务分工 贡献 林泽宇 团队分工.撰写博客.修改完善需求规格说明书.整理代码规范 李涵 后端架构设计 尹海川 logo设计修改.数据库数据 郏敏杰 课堂展示.查阅资料.整理关键和难 ...
- OSG学习:矩阵变换节点示例
#include<osgViewer\Viewer> #include<osg\Node> #include<osg\Geode> #include<osg\ ...
- ASP.NET 使用MVC4的EF5 Code First 入门(一):创建数据库
一.基本流程 建立模型→建立控制器→EF框架自动生成视图的数据库 二.基本理论 1.约定优于配置(Convention Over Configuration) 设计不好的框架通常需要多个配置文件,每一 ...