(https://www.pixiv.net/member_illust.php?mode=medium&illust_id=65608478)

Problem Description

For a decimal number x with n digits (AnAn-1An-2 ... A2A1), we define its weight as F(x) = An * 2n-1 + An-1 * 2n-2 + ... + A2 * 2 + A1 * 1. Now you are given two numbers A and B, please calculate how many numbers are there between 0 and B, inclusive, whose weight is no more than F(A).

Input

The first line has a number T (T <= 10000) , indicating the number of test cases.
For each test case, there are two numbers A and B (0 <= A,B < 109)

Output

For every case,you should output "Case #t: " at first, without quotes. The t is the case number starting from 1. Then output the answer.

Sample Input

3
0 100
1 10
5 100

Sample Output

Case #1: 1
Case #2: 2
Case #3: 13

 
(终于找到时间写数位dp了。。)
 
先总结一下数位dp的套路。
通常情况下,数位dp用于统计个数,其实是暴力枚举的优化。
 
想想面对一道数位dp的题,如果暴力做会怎么做?for每一个数,判断是否合法。但是我们发现:例如当枚举到 23456 和 33456 时,后面的部分“3456”是相同的,也就是说我们多枚举了很多次相同的情况,这时候就可以考虑用dp(记忆化)来优化。当需要用上一个状态很多次的时候,就可以考虑dp。
 
所以数位dp的套路一般是:
f[pos][...],dfs(pos,...,limit,[zero])
表示:当前位,一些需要用到的状态,是否顶着上限,[是否有前导零(根据题目需要)]
当没有限制的时候,就记忆化
 
而这道题也符合这个套路,只不过状态稍微和平常的不一样。
通常的状态是和前面的位置上的值有关,但是考虑这道题该如何储存状态才能方便转移呢?
首先,这个二进制一定有鬼!(但是想偏了)发现数据最高位才9,29是一个很小的数。而这道题的比较对象是一个数值,所以转移的状态需要和数值有关。思考当我们已经枚举了前i位分别是那些数,相当于已经得到了前i位的fi值,如果要优化,就是直接调用“后面的数中的f值小于f(a)-fi的个数”。
 
所以状态记录为:
f[pos][sum]
表示第pos位,后面的数的值小于等于sum的数的个数
 
这样就很简单啦
(但是思路还是很巧妙的,所以要总结一下)
 
 #include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std; int f[][],a,b,len,orz[],sum,mi[]; int dfs(int pos,int pre,bool limit){
if(pos==){
if(pre<=sum) return ;
return ;
}
if((!limit)&&f[pos][sum-pre]!=-) return f[pos][sum-pre];
int st=limit?orz[pos]:;
int ans=;
for(int i=;i<=st;i++)
if(pre+i*mi[pos]<=sum) ans+=dfs(pos-,pre+i*mi[pos],limit&&i==st);
if(!limit) f[pos][sum-pre]=ans;
return ans;
}
int main(){
memset(f,-,sizeof(f));
mi[]=;
for(int i=;i<=;i++) mi[i]=mi[i-]*;
int t;
scanf("%d",&t);
for(int k=;k<=t;k++){
scanf("%d%d",&a,&b);
sum=;
for(int i=a,j=;i;i/=,j++) sum+=mi[j]*(i%);//printf("sum=%d\n",sum);
for(len=,b;b;b/=) orz[++len]=b%;
printf("Case #%d: %d\n",k,dfs(len,,));
}
return ;
}

【hdu4734】【F(x)】数位dp + 小小的总结一下的更多相关文章

  1. [hdu4734]F(x)数位dp

    题意:求0~f(b)中,有几个小于等于 f(a)的. 解题关键:数位dp #include<bits/stdc++.h> using namespace std; typedef long ...

  2. hdu4734 F(x)(数位dp)

    题目传送门 F(x) Time Limit: 1000/500 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  3. HDU-4734 F(x) 数位DP

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4734 注意到F(x)的值比较小,所以可以先预处理所有F(x)的组合个数.f[i][j]表示 i 位数时 ...

  4. 【hdu4734】F(x) 数位dp

    题目描述 对于一个非负整数 $x=​​\overline{a_na_{n-1}...a_2a_1}$ ,设 $F(x)=a_n·2^{n-1}+a_{n-1}·2^{n-2}+...+a_2·2^1+ ...

  5. hdu 4389 X mod f(x) 数位DP

    思路: 每次枚举数字和也就是取模的f(x),这样方便计算. 其他就是基本的数位Dp了. 代码如下: #include<iostream> #include<stdio.h> # ...

  6. HDU 4734 F(x) ★(数位DP)

    题意 一个整数 (AnAn-1An-2 ... A2A1), 定义 F(x) = An * 2n-1 + An-1 * 2n-2 + ... + A2 * 2 + A1 * 1,求[0..B]内有多少 ...

  7. F(x) 数位dp

    Problem Description For a decimal number x with n digits (AnAn-1An-2 ... A2A1), we define its weight ...

  8. HDU4389:X mod f(x)(数位DP)

    Problem Description Here is a function f(x): int f ( int x ) { if ( x == 0 ) return 0; return f ( x ...

  9. HDU 4734 - F(x) - [数位DP][memset优化]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4734 Time Limit: 1000/500 MS (Java/Others) Memory Lim ...

随机推荐

  1. appcan UI

    appcan UI 公共类 ([appcanUI框架地址:](http://newdocx.appcan.cn/UI/source) .ub { display: -webkit-box !impor ...

  2. embed标签 阻止点击事件 让父元素处理点击事件

    由于规定页面显示的PDF文件要有固定大小,使得页面风格统一 最开始发现了CSS样式pointer-events 写出如下代码,在360急速浏览器急速模式中访问可在点击PDF控件时可跳转页面 <a ...

  3. 转 一次完整地http请求

    作者:斯巴达克斯 时间:January 11, 2014 分类:WEB 声明:本文章中的说法仅是个人理解总结,不一定完全正确,但是可以有助于理解. 关于HTTP协议可以参考以下: HTTP协议漫谈 h ...

  4. 解决linux下终端无法输入的假死问题

    有时在linux下shell终端中,会突然出现终端应用卡死,无法接受键盘输入, 但是其它分屏, 系统都是正常的.这本来是一个终端的很老的功能, 叫软件流控制(XON/XOFF flow control ...

  5. python基础===成员访问__len__()和__getitem__()

    class A: def __init__(self,*args): self.name = arg pass def __len__(self): return len(self.name) a = ...

  6. 005 JAVA多线程和并发基础面试问答(转载)

    原文链接:http://ifeve.com/java-multi-threading-concurrency-interview-questions-with-answers/ 多线程和并发问题是Ja ...

  7. hadoop 安装 错误及解决方法

    1.ssh 相关问题: rm ~/.ssh/known_hosts //与ssh中的不服 //再重新生成密钥 2.ERROR namenode.NameNode: java.io.IOExceptio ...

  8. iOS APP程序启动原理

    UIApplication 程序启动原理 一个应用程序运行就必须要有一个进程,一个进程至少要有一个线程,我们把这个线程叫做主线程,主线程开启之后会开启一个主运行循环,如果不开启一个运行循环,程序开启了 ...

  9. Python-生成器/你不知道的点

    1.什么是生成器 通过列表生成式,我们可以直接创建一个列表.但是,受到内存限制,列表容量肯定是有限的.而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素, ...

  10. ASP.NET Core Module overview模块概述

    原文地址:ASP.NET Core Module overview By Tom Dykstra, Rick Strahl, and Chris Ross ASP.NET Core模块(ANCM)让你 ...