Description

给出n个数qi,给出Fj的定义如下:

令Ei=Fi/qi,求Ei.

Input

第一行一个整数n。

接下来n行每行输入一个数,第i行表示qi。

n≤100000,0<qi<1000000000

Output

n行,第i行输出Ei。与标准答案误差不超过1e-2即可。

Sample Input

5

4006373.885184

15375036.435759

1717456.469144

8514941.004912

1410681.345880

Sample Output

-16838672.693

3439.793

7509018.566

4595686.886

10903040.872

Solution

推式子

\(\displaystyle E_i=\sum_{j<i}\frac{q_j}{(i-j)^2}-\sum_{j>i}\frac{q_j}{(i-j)^2}\)

令 \(g_i = \begin{cases}&\frac{1}{i^2}~~(i\neq0)\\&0 ~~~(i=0)\end{cases}\)

那么

\(\displaystyle E_i=\sum_{j=0}^{i-1}q_jg_{i-j}-\sum_{j=i+1}^{n}q_jg_{i-j}\)

\(\displaystyle ~~~~~=\sum_{j=0}^{i-1}q_jg_{i-j}-\sum_{j=0}^{n-i-1}p_jg_{n-i-j}~~~~(p_i=g_{n-i})\)

两个卷积形式,FFT就好了

#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=1<<19;
const db Pi=acos(-1.0);
int qn,n,m,cnt,rev[MAXN];
struct Complex{
db real,imag;
inline Complex operator + (const Complex &A) const {
return (Complex){real+A.real,imag+A.imag};
};
inline Complex operator - (const Complex &A) const {
return (Complex){real-A.real,imag-A.imag};
};
inline Complex operator * (const Complex &A) const {
return (Complex){real*A.real-imag*A.imag,imag*A.real+real*A.imag};
};
};
Complex q[MAXN],p[MAXN],g[MAXN];
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline void FFT(Complex *A,int tp)
{
for(register int i=0;i<n;++i)
if(i<rev[i])std::swap(A[i],A[rev[i]]);
for(register int l=2;l<=n;l<<=1)
{
Complex wn=(Complex){cos(2*Pi/l),sin(tp*2*Pi/l)};
for(register int i=0;i<n;i+=l)
{
Complex w=(Complex){1,0};
for(register int j=0;j<(l>>1);++j)
{
Complex A1=A[i+j],A2=A[i+j+(l>>1)]*w;
A[i+j]=A1+A2;A[i+j+(l>>1)]=A1-A2;
w=w*wn;
}
}
}
}
int main()
{
read(qn);
m=qn+qn-1;
for(register int i=0;i<qn;++i)
{
scanf("%lf",&q[i].real);
p[qn-i].real=q[i].real;
if(!i)g[i].real=0.0;
else g[i].real=1.0/(1ll*i*i);
}
for(n=1;n<m;n<<=1)cnt++;
for(register int i=0;i<n;++i)rev[i]=(rev[i>>1]>>1)|((i&1)<<(cnt-1));
FFT(q,1);FFT(p,1);FFT(g,1);
for(register int i=0;i<n;++i)q[i]=q[i]*g[i],p[i]=p[i]*g[i];
FFT(q,-1);FFT(p,-1);
for(register int i=0;i<qn;++i)printf("%f\n",(q[i].real-p[qn-i].real)/n);
return 0;
}

【刷题】BZOJ 3527 [Zjoi2014]力的更多相关文章

  1. ●BZOJ 3527 [Zjoi2014]力

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3527 题解: FFT求卷积. $$\begin{aligned}E_i&=\frac ...

  2. BZOJ 3527: [Zjoi2014]力

    Description 求 \(E_i=\sum _{j=0}^{i-1} \frac {q_j} {(i-j)^2}-\sum _{j=i+1}^{n-1} \frac{q_j} {(i-j)^2} ...

  3. BZOJ 3527: [ZJOI2014]力(FFT)

    BZOJ 3527: [ZJOI2014]力(FFT) 题意: 给出\(n\)个数\(q_i\),给出\(Fj\)的定义如下: \[F_j=\sum \limits _ {i < j} \fra ...

  4. bzoj 3527 [Zjoi2014]力——FFT

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3527 把 q[ i ] 除掉.设 g[ i ] = i^2 ,有一半的式子就变成卷积了:另一 ...

  5. bzoj 3527 [Zjoi2014] 力 —— FFT

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3527 看了看TJ才推出来式子,还是不够熟练啊: TJ:https://blog.csdn.n ...

  6. bzoj 3527: [Zjoi2014]力 快速傅里叶变换

    题意: 给出n个数qi,给出Fj的定义如下:  令Ei=Fi/qi,求Ei. fft的那一堆东西还是背不到啊...这次写虽说完全自己写的,但是还是在参见了以前fft程序的情况下调了很久,主要在如下几点 ...

  7. 数学(FFT):BZOJ 3527 [Zjoi2014]力

    题目在这里:http://wenku.baidu.com/link?url=X4j8NM14MMYo8Q7uPE7-7GjO2_TXnMFA2azEbBh4pDf7HCENM3-hPEl4mzoe2w ...

  8. BZOJ 3527: [Zjoi2014]力(FFT)

    我们看一下这个函数,很容易就把他化为 E=sigma(aj/(i-j)/(i-j))(i>j)-sigma(aj/(i-j)/(i-j))(j>i) 把它拆成两半,可以发现分子与分母下标相 ...

  9. bzoj 3527: [Zjoi2014]力 快速傅里叶变换 FFT

    题目大意: 给出n个数\(q_i\)定义 \[f_i = \sum_{i<j}{\frac{q_iq_j}{(i-j)^2}} - \sum_{i>j}\frac{q_iq_j}{(i-j ...

随机推荐

  1. Netty示例

    一,服务端 ** * 测试Netty类库:服务端代码 * Created by LiuHuiChao on 2016/10/24. */ public class NettyServerTest { ...

  2. ruby 基础教程1-8-1

    1.":class, instance_of?, :is_a?"都是Object类的方法,每个对象都可以调用 2.":class"方法用户获取对象归属类的名称 ...

  3. JavaScript 字符串 & Math & Date

    字符串 字符串就是零个或多个排在一起的字符,放在单引号或双引号之中. 'abc' "abc" 单引号字符串的内部,可以使用双引号.双引号字符串的内部,可以使用单引号. 'key=& ...

  4. POJ 2104 K-th Number(划分树)

    Description You are working for Macrohard company in data structures department. After failing your ...

  5. vue学习笔记(三):vue-cli脚手架搭建

    一:安装vue-cli脚手架: 1:为了确保你的node版本在4.*以上,输入 node -v 查看本机node版本,低于4请更新. 2:输入:  npm install -g vue-cli     ...

  6. 常用web资源

    ip相关 新浪:http://int.dpool.sina.com.cn/iplookup/iplookup.php?format=js&ip=220.181.38.110 (不带参数本机) ...

  7. c#和.net区别

    .net 包含两大部分:.net framework类库和公共语言运行库(CLR) .net framework类库,就是微软工程师写好的各种功能类,例如math类. 公共语言运行库:1.与操作系统进 ...

  8. 解决android invalid symbol: 'switch'

    http://stackoverflow.com/questions/16728178/unable-to-compile-project-in-android-studio-gradle-inval ...

  9. Python 元组 集合

    1. 元组 >>> a = (1,2,3,4,5) >>> b = list(a) #转换成列表对象, 可以更改 >>> b [1, 2, 3, ...

  10. iOS- 多线程技术的概述及优点

    1.概述 在iOS开发中: •耗时操作,例如网络图片.视频.歌曲.书籍等资源下载 •游戏中的声音播放   我们可以利用多线程: •充分发挥多核处理器的优势,并发(同时执行)执行任务让系统运行的更快.更 ...