POJ3974:Palindrome——题解
http://poj.org/problem?id=3974
题目大意:
求最大回文子串长度。
————————————————————
马拉车板子题。
马拉车大概讲解:
首先在每两个字母之间插入‘#’
id为一个回文串的中点,mx为该串的右端点,p[i]为以i为中点的回文串长度。
假设我们求完了上述的mx和id,枚举i的时候,我们有:
if(mx>i)p[i]=min(p[2*id-i],mx-i);
(显然i在该回文串中,左右对称可得该式子(如果i对称的点所在的回文串在id的回文串里面那么就是前者的式子,否则因为不保证对称性所以为后者的式子))
不然因为没有办法判断所以p[i]=1;
剩下来就是暴力匹配的活了。
(测试过如果写成函数的话会很慢(2000+ms),这么写是(200+ms),所以不美观就不美观吧)。
#include<cstdio>
#include<cstring>
#include<algorithm>
#define N 1000010
using namespace std;
int l,cnt,mx,id,p[*N],maxn;
char s[*N];
int main(){
while(){
cnt++;
scanf("%s",s+);
if(s[]=='E'&&s[]=='N'&&s[]=='D')break; l=strlen(s+);
s[]='@';
for(int i=l;i>=;i--)s[i*]=s[i];
for(int i=;i<=*l+;i+=)s[i]='#';
s[*l+]='?';
l=*l+; maxn=mx=;
for(int i=;i<=l;i++){
if(mx>i)p[i]=min(p[*id-i],mx-i);
else p[i]=;
while(s[i-p[i]]==s[i+p[i]])p[i]++;
if(i+p[i]>mx){
mx=i+p[i];
id=i;
}
maxn=max(maxn,p[i]);
} printf("Case %d: %d\n",cnt,maxn-);
}
return ;
}
POJ3974:Palindrome——题解的更多相关文章
- POJ----(3974 )Palindrome [最长回文串]
Time Limit: 15000MS Memory Limit: 65536K Total Submissions: 5121 Accepted: 1834 Description Andy ...
- POJ3974 Palindrome
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...
- poj3974 Palindrome【回文】【Hash】【二分】
Palindrome Time Limit: 15000MS Memory Limit: 65536K Total Submissions: 13157 Accepted: 5028 Desc ...
- POJ3974 Palindrome (manacher算法)
题目大意就是说在给定的字符串里找出一个长度最大的回文子串. 才开始接触到manacher,不过这个算法的确很强大,这里转载了一篇有关manacher算法的讲解,可以去看看:地址 神器: #includ ...
- POJ--3974 Palindrome(回文串,hash)
链接:点击这里 #include<iostream> #include<algorithm> #include<stdio.h> #include<cstri ...
- URAL1297:Palindrome——题解
http://acm.timus.ru/problem.aspx?space=1&num=1297 https://vjudge.net/problem/URAL-1297 给定一个字符串,求 ...
- 【Manacher算法】poj3974 Palindrome
Manacher算法教程:http://blog.csdn.net/ggggiqnypgjg/article/details/6645824 模板题,Code 附带注释: #include<cs ...
- 【后缀数组】【线段树】poj3974 Palindrome
考虑奇数长度的回文,对于字符串上的每个位置i,如果知道从i开始的后缀和到i为止的前缀反转后的字符串的lcp长度的话,也就知道了以第i个字符为对称中心的最长回文的长度了.因此,我们用在S中不会出现的字符 ...
- POJ3974 Palindrome Manacher 最长回文子串模板
这道题可以$O(nlogn)$,当然也可以$O(n)$做啦$qwq$ $O(nlogn)$的思路是枚举每个回文中心,通过哈希预处理出前缀和后缀哈希值备用,然后二分回文串的长度,具体的就是判断在长度范围 ...
随机推荐
- NB-IOT连接移动onenet平台流程
1. 先创建账号,然后创建产品 2. 创建设备,用AT+CGSN和AT+CIMI查询NB-IOT的IMEI和IMSI填写上去. 3. 创建好的设备.
- 敏捷开发学习笔记-Agile development(AM)
以人为核心,迭代,循序渐进 项目被切分为多个子项目,每个子项目都经过测试,具备集成和可运行的特征 5个价值观:沟通.简单.反馈.勇气.谦逊 敏捷模型与瀑布模型的区别 相对于瀑布模型,提高开发效率和 ...
- 为什么Python在列表和元组的末尾允许使用逗号?
Python 允许您在列表,元组和字典的末尾添加一个尾随逗号: [1, 2, 3,] ('a', 'b', 'c',) d = { "A": [1, 5], "B&quo ...
- [HNOI2018]转盘
[HNOI2018]转盘 给你一个 \(n\) 元环, 你可以在 \(0\) 时刻从任意一个位置出发, 每一秒可以选择往后或者留在原地每个点有个参数 \(T_i\) , 当你走到 \(i\) 的时间 ...
- Python 学习笔记之——用 sklearn 对数据进行预处理
1. 标准化 标准化是为了让数据服从一个零均值和单位方差的标准正态分布.也即针对一个均值为 \(mean\) 标准差为 \(std\) 的向量 \(X\) 中的每个值 \(x\),有 \(x_{sca ...
- 在 CentOS 下手工安装 Docker v1.1x
Docker在 centos 6.x 下面默认最新的版本是1.7, 然而这个并不符合我的实际需求, 尤其我需要 docker-compose 来作为编配工具部署swarm, 所以我只有手工安装了. 首 ...
- 创新手机游戏《3L》开发点滴(1)——道具、物品、装备表设计
一.游戏物品/道具系统数据模型设计特点 为了让游戏更加的丰富,我们1201团队的新手机游戏设计了道具系统.于是丰富了游戏.取悦了玩家,哭了开发——道具/物品数据子系统是简单的.复杂的.不确定的: 简单 ...
- java超强分页标签演示
最近在做一个项目,用到了一个分页,于是动手写了个分页标签,先将代码贴出来,供大家交流,写的不好,请见谅!. 以下是java标签类,继承自SimpleTagSupport package com.lyn ...
- es6从零学习(三):Class的基本用法
es6从零学习(三):Class的基本用法 一:定义一个类 //定义类 class Point { constructor(x, y) { this.x = x; this.y = y; } toSt ...
- 每周psp-第五周
PSP表格: 类别 任务 开始时间 结束时间 中断时间 delta时间 开会 scrum立会 10.13下午6:04 10.13下午6:34 0 30 开会 scrum立会 10.14下午6:02 1 ...