[CODE FESTIVAL 2016]Encyclopedia of Permutations
题意:给定一个排列,其中有可能有一些未确定的数,求出所有可能的排列的排名之和
首先我们要知道怎么算一个给定排列的排名,设它为$p_{1\cdots n}$
排名即为比它小的排列数$+1$,对于每一个比$p$小的排列$s$,我们都能找到$i$使得对于$j\lt i$有$p_j=s_j$且$p_i\gt s_i$,枚举这个$i$,$s_i$可以是任何$\lt p_i$且不在$p_{1\cdots i-1}$中的数,有$p_i-1-\sum\limits_{j\lt i}[p_j\lt p_i]$种选择,后面的$n-i$个数可以用$p_{i+1\cdots n}$随意重排得到,于是$p$的排名为$1+\sum\limits_{i=1}^n(n-i)!\left(p_i-1-\sum\limits_{j\lt i}[p_j\lt p_i]\right)$(所以求一个排列的排名可以用树状数组做到$O(n\log n)$)
现在来做这道题,枚举每一个可能的排列$s$计算答案,为了方便,以下的下标和排列都是$0\cdots n-1$,设$p$中有$k$位未确定,则有$k!$个不同的$s$
$\begin{aligned}&\quad\sum\limits_s1+\sum\limits_{i=0}^{n-1}(n-1-i)!\left(s_i-\sum\limits_{j\lt i}[s_j\lt s_i]\right)\\&=k!+\sum\limits_{i=0}^{n-1}(n-1-i)\sum\limits_s\left(s_i-\sum\limits_{j\lt i}[s_j\lt s_i]\right)\end{aligned}$
前面的部分和$\sum\limits_ss_i$都是很好算的,现在我们要算$\sum\limits_{j\lt i}\sum\limits_s[s_j\lt s_i]$,分类讨论一下
1.$p_i\neq0$,$\sum\limits_ss_i=k!p_i$
1-1.$p_j\neq0$,答案为$k!\sum\limits_{j\lt i}[p_j\lt p_i,p_j\neq 0]$,用树状数组算即可
1-2.$p_j=0$,$s_j$可以从$x\notin p,x\lt p_i$中的数任选,预处理$s_i=\sum\limits_{j\leq i}[p_i=0],np_i=\sum\limits_{j\leq i}[j\notin p]$,答案即为$(k-1)!np_{p_i}\cdot s_i$
2.$p_i=0$,$\sum\limits_ss_i=(k-1)!\sum\limits_{i\notin p}i$
2-1.$p_j\neq0$,$s_i$可以从$x\notin p,x\gt p_j$中的数任选,预处理$sn_i=\sum\limits_{j\leq i}[p_j\neq0]np_{p_j}$,答案为$(k-1)!((i-s_{i-1})np_n-sn_i)$
2-2.$p_j=0$,$s_i,s_j$在满足$s_j\lt s_i$的条件下任选,所以答案为$(s_i-1)\binom k2(k-2)!$
总时间复杂度$O(n\log n)$
#include<stdio.h> #include<algorithm> using namespace std; typedef long long ll; const int mod=1000000007; int mul(int a,int b){return(ll)a*b%mod;} int ad(int a,int b){return(a+b)%mod;} void inc(int&a,int b){(a+=b)%=mod;} int p[500010],rp[500010],s[500010],fac[500010],np[500010],l[500010],sn[500010]; //s[i] = '-1's in 0...i //np[i] = count x [x<=i,x not in p] //l[i] = count j [j<i,pj<pi,pj!=-1] //sn[i]= sum [j<=i,pj!=-1] np[pj] int tr[500010],n; int lowbit(int x){return x&-x;} void modify(int x){ while(x<=n){ tr[x]++; x+=lowbit(x); } } int query(int x){ int s=0; while(x){ s+=tr[x]; x-=lowbit(x); } return s; } int C2(ll n){return n*(n-1)/2%mod;} int main(){ int k,i,ans,tmp,snp; scanf("%d",&n); k=0; for(i=0;i<n;i++){ np[i]=1; rp[i]=l[i]=-1; } for(i=0;i<n;i++){ scanf("%d",p+i); p[i]--; if(p[i]==-1) k++; else{ np[p[i]]=0; rp[p[i]]=i; } s[i]=k; } for(i=0;i<n;i++){ if(~rp[i]){ l[rp[i]]=query(rp[i]+1); modify(rp[i]+1); } } l[0]=0; for(i=1;i<n;i++){ if(l[i]==-1)l[i]=l[i-1]; } snp=0; for(i=0;i<n;i++){ if(np[i])inc(snp,i); } for(i=1;i<=n;i++)np[i]+=np[i-1]; fac[0]=1; for(i=1;i<=n;i++)fac[i]=mul(fac[i-1],i); for(i=0;i<n;i++){ if(i)sn[i]=sn[i-1]; if(~p[i])inc(sn[i],np[p[i]]); } ans=0; for(i=0;i<n;i++){ if(~p[i]){ tmp=mul(fac[k],l[i]); if(k)inc(tmp,mul(mul(np[p[i]],fac[k-1]),s[i])); inc(ans,mul(fac[n-1-i],mul(fac[k],p[i])-tmp)); }else{ if(i) tmp=mul(fac[k-1],mul(i-s[i-1],np[n])-sn[i]); else tmp=0; if(s[i]>1)inc(tmp,mul(s[i]-1,mul(C2(k),fac[k-2]))); inc(ans,mul(fac[n-1-i],mul(snp,fac[k-1])-tmp)); } } inc(ans,fac[k]); printf("%d",ad(ans,mod)); }
[CODE FESTIVAL 2016]Encyclopedia of Permutations的更多相关文章
- 【AtCoder】CODE FESTIVAL 2016 qual C
CODE FESTIVAL 2016 qual C A - CF -- #include <bits/stdc++.h> #define fi first #define se secon ...
- 【AtCoder】CODE FESTIVAL 2016 qual A
CODE FESTIVAL 2016 qual A A - CODEFESTIVAL 2016 -- #include <bits/stdc++.h> #define fi first # ...
- 【AtCoder】CODE FESTIVAL 2016 qual B
CODE FESTIVAL 2016 qual B A - Signboard -- #include <bits/stdc++.h> #define fi first #define s ...
- Atcoder CODE FESTIVAL 2016 Grand Final E - Water Distribution
Atcoder CODE FESTIVAL 2016 Grand Final E - Water Distribution 题目链接:https://atcoder.jp/contests/cf16- ...
- Atcoder CODE FESTIVAL 2016 qual C 的E题 Encyclopedia of Permutations
题意: 对于一个长度为n的排列P,如果P在所有长度为n的排列中,按照字典序排列后,在第s位,则P的value为s 现在给出一个长度为n的排列P,P有一些位置确定了,另外一些位置为0,表示不确定. 现在 ...
- CODE FESTIVAL 2016 qualA Grid and Integers
划年代久远的水 题意 有一个R*C的棋盘,要求在每个格子上填一个非负数,使得对任意一个2*2的正方形区域,左上角和右下角的数字之和等于左下角和右上角的数字之和.有一些格子已经被填上了数字,问现在能否满 ...
- [CODE FESTIVAL 2016]Problem on Tree
题意:给一棵树,对于一个满足以下要求的序列$v_{1\cdots m}$,求最大的$m$ 对$\forall1\leq i\lt m$,路径$(v_i,v_{i+1})$不包含$v$中除了$v_i,v ...
- [CODE FESTIVAL 2016]Distance Pairs
题意:有一个未知的边权为$1$的图,给定所有点到$1$的最短路$a_i$和到$2$的最短路$b_i$,问是否存在这样的图,如果存在,问图中最少有多少条边 先考虑$a_i$,有$a_1=0,a_i\ne ...
- CODE FESTIVAL 2016 Grand Final 题解
传送门 越学觉得自己越蠢--这场除了\(A\)之外一道都不会-- \(A\) 贪心从左往右扫,能匹配就匹配就好了 //quming #include<bits/stdc++.h> #def ...
随机推荐
- bzoj 1406 数论
首先问题的意思就是在找出n以内的所有x^2%n=1的数,那么我们可以得到(x+1)(x-1)=y*n,那么我们知道n|(x+1)(x-1),我们设n=a*b,那么我们对于任意的a,我们满足n%a==0 ...
- bzoj 1052 dfs
首先可以二分答案,将最优性问题转化为判定性问题. 对于二分到的边长,我们可以把所有的点看成一个大的矩形,这个矩形为包括所有点的最小矩形,那么贪心的想,3个正方形,第一个肯定放在这个矩形其中的一角,然后 ...
- hdu 1869 六度分离(最短路floyd)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1869 六度分离 Time Limit: 5000/1000 MS (Java/Others) M ...
- JSP九大内置对象,七大动作,三大指令
JSP之九大内置对象 隐藏对象入门探索 Servlet 和JSP中输出数据都需要使用out对象.Servlet 中的out对象是通过getWriter()方法获取的.而JSP中没有定义out对象却可以 ...
- Linux汇编教程04:寻址方式
这一节,我们主要来讨论寻址方式,这一点十分重要. 我们上一节有稍微提了一下,内存地址引用的通用格式: 地址或偏移(%基址寄存器, %索引寄存器, 比例因子 ) 结果地址 = 地址或偏移 + %基址寄存 ...
- TCP之非阻塞connect和accept
套接字的默认状态是阻塞的,这就意味着当发出一个不能立即完成的套接字调用时,其进程将被投入睡眠,等待响应操作完成,可能阻塞的套接字调用可分为以下四类: (1) 输入操作,包括read,readv,rec ...
- centos6.5升级Linux内核步骤
centos6.5升级Linux内核步骤 http://www.jianshu.com/p/c75f00182b4c 使用的操作系统是是centos6.5,按照官方的推荐的配置,把linux内核升级到 ...
- eclipse快捷键及eclipse一直building处理
1.输入Syso然后按 ALT+/ ------>System.out.println(); 2.CTRL+/ ------>添加或消除注释// 3.CTRL+SHIF ...
- JAVA 线程状态及转化
线程状态图 说明:线程共包括以下5种状态.1. 新建状态(New) : 线程对象被创建后,就进入了新建状态.例如,Thread thread = new Thread().2. 就绪状 ...
- Python简单的制作图片验证码
-人人可以学Python--这里示范的验证码都是简单的,你也可以把字符扭曲 人人可以学Python.png Python第三方库无比强大,PIL 是python的一个d第三方图片处理模块,我们也可以使 ...