STNE:自翻译网络嵌入
该工作认为在节点属性与结构信息再本质上是有一定联系的,提出 STNE 模型,利用 seq2seq 模型进行特征提取,将利用节点信息及网络结构识别节点的过程比喻为翻译的过程

1. 简介

目的:学习网络中节点的低维表示
将利用节点信息及网络结构识别节点的过程比喻为翻译的过程
 
论文引用网络中,每个节点代表一篇论文,每条边代表引用关系。每个节点自身属性包括文章的摘要,关键词,研究领域等等。该论文的假设依据是,论文所形成的引用网络与论文自身的属性之间有较强关系
 
现有方案
1. 将结构信息和属性信息分别进行embedding之后,组合
2. 考虑短距离/固定邻域范围保留结构信息(第一/二邻近)
(复杂问题中很难确定邻域范围)
 

2. 创新点(贡献):

提出基于seq2seq 的模型框架(STNE)
利用网络上随机遍历生成的序列,将节点内容信息翻译成结构信息,从而结合两种信息
 
  • 将网络嵌入转化为 seq2seq 任务,从局部建模到序列的全局结构建模,捕获更多语义信息
  • 设计了一个异构的seq2seq 模型,嵌入原始输入文本,以端到端的方式学习从节点属性序列到节点指示序列的映射
对比
  • 与传统方法相比, STNE 直接节点序列对建模,从文本序列中自动学习生成函数,将 seq2seq 网络模型与其他文本嵌入模型相结合,通过学习内容序列到节点序列的映射,将内容信息和结构信息无缝融合到隐藏层的潜在向量中,高效表示节点
  • 根据与节点的不同交互提出上下文感知嵌入
  • 相对于 CANE: 从相邻文本节点感知嵌入
  • STNE:针对不同序列学习动态的节点嵌入(需要更长范围,更灵活的上下文)

3. 模型框架

STNE 总体框架

 
图一总体框架:
1. 给定内容丰富的网络,通过随机游走提取节点序列,并将节点序列分为两个部分
  • 节点属性序列
  • 节点指示序列(由节点指示向量 one-hot 表示)
2. 通过这两个序列学习特定的 seq2seq 模型,该模型可以用于将节点属性“翻译”为节点指示向量
3. 步骤二的目的是得到中间层的潜在转换( 是可用于复杂网络分析 )

4. 方法过程

 

由图2 可看出,该过程为:
  • 节点属性---->低维表示( Encoder )
  • 低维表示---->节点序列( Decoder )
 
并行序列 S 包含:
节点身份序列 Si 和 相关内容序列 Sc
(使用并行序列将网络嵌入转化为机器翻译问题,从内容到节点的异构自翻译过程)
 
映射函数 Sc->Si

 更详细的总结

Content to Node: Self-Translation Network Embedding的更多相关文章

  1. network embedding 需读论文

    Must-read papers on NRL/NE. github: https://github.com/nate-russell/Network-Embedding-Resources NRL: ...

  2. Network Embedding 论文小览

    Network Embedding 论文小览 转自:http://blog.csdn.net/Dark_Scope/article/details/74279582,感谢分享! 自从word2vec横 ...

  3. 论文阅读 Exploring Temporal Information for Dynamic Network Embedding

    10 Exploring Temporal Information for Dynamic Network Embedding 5 link:https://scholar.google.com.sg ...

  4. 论文阅读 GloDyNE Global Topology Preserving Dynamic Network Embedding

    11 GloDyNE Global Topology Preserving Dynamic Network Embedding link:http://arxiv.org/abs/2008.01935 ...

  5. 论文:network embedding

    KDD2016: network embedding model: deep walk(kdd 2014): http://videolectures.net/kdd2014_perozzi_deep ...

  6. On the Optimal Approach of Survivable Virtual Network Embedding in Virtualized SDN

    Introduction and related work 云数据中心对于虚拟技术是理想的创新地方. 可生存性虚拟网络映射(surviavable virtual network embedding ...

  7. NEU(Fst Network Embedding Enhancement via High Order Proximity Approximation)

    NEU(Fst Network Embedding Enhancement via High Order Proximity Approximation) NEU:通过对高阶相似性的近似,加持快速网络 ...

  8. Context-Aware Network Embedding for Relation Modeling

    Context-Aware Network Embedding for Relation Modeling 论文:http://www.aclweb.org/anthology/P17-1158 创新 ...

  9. Network Embedding

    网络表示 网络表示学习(DeepWalk,LINE,node2vec,SDNE) https://blog.csdn.net/u013527419/article/details/76017528 网 ...

随机推荐

  1. CF17E:Palisection——题解

    https://vjudge.net/problem/CodeForces-17E http://codeforces.com/problemset/problem/17/E 题目大意:给一个长度为n ...

  2. 【简单算法】22.删除链表的倒数第N个节点

    题目: 给定一个链表,删除链表的倒数第 n 个节点,并且返回链表的头结点. 示例: 给定一个链表: ->->->->, 和 n = . 当删除了倒数第二个节点后,链表变为 -& ...

  3. 【单调队列】【P1714】 切蛋糕

    传送门 Description 今天是小Z的生日,同学们为他带来了一块蛋糕.这块蛋糕是一个长方体,被用不同色彩分成了N个相同的小块,每小块都有对应的幸运值. 小Z作为寿星,自然希望吃到的第一块蛋糕的幸 ...

  4. 【转】 GRASP(通用职责分配软件模式)模式

    转自:http://www.cnblogs.com/sevenyuan/archive/2010/03/05/1678730.html 及:http://blog.csdn.net/lovelion ...

  5. IIS7绑定多个HTTPS网站并应用自签名证书

    本文主要介绍如何在IIS中添加多个网站并使用同一个数字签名证书(win7+IIS7.5) IIS中添加站点site1,端口号为80,主机名为空.如下图: 创建证书 IIS->Server Cer ...

  6. hdu5828 Rikka with Sequence

    传送门:http://acm.hdu.edu.cn/showproblem.php?pid=5828 [题解] 考虑bzoj3211 花神游历各国,只是多了区间加操作. 考虑上题写法,区间全为1打标记 ...

  7. 【BZOJ】1202: [HNOI2005]狡猾的商人

    [题意]w组数据,给定n和m,给出m段区间[s,t](1<=s<=t<=n)的数字和,求是否矛盾.n<100,m<1000,w<100. [算法]带权并查集 [题解 ...

  8. 【洛谷 P1129】 [ZJOI2007]矩阵游戏 (二分图匹配)

    题目链接 看到题目肯定首先会想到搜索. 然鹅数据范围\(n<=200\)这么大(其实也不算太大),肯定是不行的. 如果\((i,j)\)是\(1\),从\(i\)向\(j\)连一条边,表示第\( ...

  9. java map转json servlet response

    1.手写一个map转json的类 1.1 调用方式 //给前端放回json数据 Map<String, Object> map = new HashMap<>(); map.p ...

  10. px,em,rem字体单位

    1.px像素(Pixel).相对长度单位.像素px是相对于显示器屏幕分辨率而言的.(引自CSS2.0手册) 2.em是相对长度单位.相对于当前对象内文本的字体尺寸,em存在值继承问题. 浏览器的默认字 ...