STNE:自翻译网络嵌入
该工作认为在节点属性与结构信息再本质上是有一定联系的,提出 STNE 模型,利用 seq2seq 模型进行特征提取,将利用节点信息及网络结构识别节点的过程比喻为翻译的过程

1. 简介

目的:学习网络中节点的低维表示
将利用节点信息及网络结构识别节点的过程比喻为翻译的过程
 
论文引用网络中,每个节点代表一篇论文,每条边代表引用关系。每个节点自身属性包括文章的摘要,关键词,研究领域等等。该论文的假设依据是,论文所形成的引用网络与论文自身的属性之间有较强关系
 
现有方案
1. 将结构信息和属性信息分别进行embedding之后,组合
2. 考虑短距离/固定邻域范围保留结构信息(第一/二邻近)
(复杂问题中很难确定邻域范围)
 

2. 创新点(贡献):

提出基于seq2seq 的模型框架(STNE)
利用网络上随机遍历生成的序列,将节点内容信息翻译成结构信息,从而结合两种信息
 
  • 将网络嵌入转化为 seq2seq 任务,从局部建模到序列的全局结构建模,捕获更多语义信息
  • 设计了一个异构的seq2seq 模型,嵌入原始输入文本,以端到端的方式学习从节点属性序列到节点指示序列的映射
对比
  • 与传统方法相比, STNE 直接节点序列对建模,从文本序列中自动学习生成函数,将 seq2seq 网络模型与其他文本嵌入模型相结合,通过学习内容序列到节点序列的映射,将内容信息和结构信息无缝融合到隐藏层的潜在向量中,高效表示节点
  • 根据与节点的不同交互提出上下文感知嵌入
  • 相对于 CANE: 从相邻文本节点感知嵌入
  • STNE:针对不同序列学习动态的节点嵌入(需要更长范围,更灵活的上下文)

3. 模型框架

STNE 总体框架

 
图一总体框架:
1. 给定内容丰富的网络,通过随机游走提取节点序列,并将节点序列分为两个部分
  • 节点属性序列
  • 节点指示序列(由节点指示向量 one-hot 表示)
2. 通过这两个序列学习特定的 seq2seq 模型,该模型可以用于将节点属性“翻译”为节点指示向量
3. 步骤二的目的是得到中间层的潜在转换( 是可用于复杂网络分析 )

4. 方法过程

 

由图2 可看出,该过程为:
  • 节点属性---->低维表示( Encoder )
  • 低维表示---->节点序列( Decoder )
 
并行序列 S 包含:
节点身份序列 Si 和 相关内容序列 Sc
(使用并行序列将网络嵌入转化为机器翻译问题,从内容到节点的异构自翻译过程)
 
映射函数 Sc->Si

 更详细的总结

Content to Node: Self-Translation Network Embedding的更多相关文章

  1. network embedding 需读论文

    Must-read papers on NRL/NE. github: https://github.com/nate-russell/Network-Embedding-Resources NRL: ...

  2. Network Embedding 论文小览

    Network Embedding 论文小览 转自:http://blog.csdn.net/Dark_Scope/article/details/74279582,感谢分享! 自从word2vec横 ...

  3. 论文阅读 Exploring Temporal Information for Dynamic Network Embedding

    10 Exploring Temporal Information for Dynamic Network Embedding 5 link:https://scholar.google.com.sg ...

  4. 论文阅读 GloDyNE Global Topology Preserving Dynamic Network Embedding

    11 GloDyNE Global Topology Preserving Dynamic Network Embedding link:http://arxiv.org/abs/2008.01935 ...

  5. 论文:network embedding

    KDD2016: network embedding model: deep walk(kdd 2014): http://videolectures.net/kdd2014_perozzi_deep ...

  6. On the Optimal Approach of Survivable Virtual Network Embedding in Virtualized SDN

    Introduction and related work 云数据中心对于虚拟技术是理想的创新地方. 可生存性虚拟网络映射(surviavable virtual network embedding ...

  7. NEU(Fst Network Embedding Enhancement via High Order Proximity Approximation)

    NEU(Fst Network Embedding Enhancement via High Order Proximity Approximation) NEU:通过对高阶相似性的近似,加持快速网络 ...

  8. Context-Aware Network Embedding for Relation Modeling

    Context-Aware Network Embedding for Relation Modeling 论文:http://www.aclweb.org/anthology/P17-1158 创新 ...

  9. Network Embedding

    网络表示 网络表示学习(DeepWalk,LINE,node2vec,SDNE) https://blog.csdn.net/u013527419/article/details/76017528 网 ...

随机推荐

  1. [HNOI2012]排队 组合数

    公式:A(n,n)*A(n+1,2)*A(n+3,m) + A(n,n)*C(m,1)*A(2,2)*C(n+1,1)*A(n+2,m-1) 分情况讨论推出公式 前者为无论何时都合法的,后者为先不合法 ...

  2. [SDOI2013]淘金 数位DP

    做了好久.... 大致思路: 求出前k大的方格之和即为答案, 先考虑一维的情况,设f[i]为数位上各个数相乘为i的数的总数,也就是对于数i,有f[i]个数它们各个位相乘为i, 再拓展到二维,根据乘法原 ...

  3. HDOJ(HDU).2844 Coins (DP 多重背包+二进制优化)

    HDOJ(HDU).2844 Coins (DP 多重背包+二进制优化) 题意分析 先把每种硬币按照二进制拆分好,然后做01背包即可.需要注意的是本题只需要求解可以凑出几种金钱的价格,而不需要输出种数 ...

  4. 复习java数据库操作的总结

    以前学习java数据库操作,学得那叫糊里糊涂,各种JDBC常用的类和接口根本是傻傻分不清啥是干嘛的.只是套着用用吧. 不过这次好歹清楚些了,呜呜,学习有阶段性,多次重复才有好效果,多么痛的领悟. 工程 ...

  5. ubuntu下安装golang

    1.安装 sudo apt-get install golang 2.查看go的安装路径 go env 查看 GOROOT="/usr/lib/go-1.6" 3.修改环境变量 e ...

  6. 关于深度学习(deep learning)的常见疑问 --- 谷歌大脑科学家 Caffe缔造者 贾扬清

    问答环节 问:在finetuning的时候,新问题的图像大小不同于pretraining的图像大小,只能缩放到同样的大小吗?" 答:对的:) 问:目前dl在时序序列分析中的进展如何?研究思路 ...

  7. Moodle简介

    Moodle简介 一.概述 Moodle是Modular Object-Oriented Dynamic Learning Environment(模块化面向对象动态学习环境)的简称,中文译名为魔灯, ...

  8. 第三方库升级Nginx

    通过PPA方式,来升级Nginx 1. 添加PPA sudo add-apt-repository ppa:nginx/stable sudo apt-get updatesudo apt-get u ...

  9. Android UI开发第二十四篇——Action Bar

    Action bar是一个标识应用程序和用户位置的窗口功能,并且给用户提供操作和导航模式.在大多数的情况下,当你需要突出展现用户行为或全局导航的activity中使用action bar,因为acti ...

  10. EasyUI Tree递归方式获取JSON

    最近需要用到EASYUI中的TREE功能,以前我是直接拼接成<UL><LI>发现这样拼完之后在更改树后对树的刷新不是很理想,现改用JSON格式,首先分析TREE中JOSN格式如 ...