http://www.lydsy.com/JudgeOnline/problem.php?id=3656

大意:经过一通推导,问题变成求$$\binom N M \mod P$$,其中N,M<=1e9, P<=1e5,P可以是合数。

参考这位神犇的博客:http://blog.csdn.net/braketbn/article/details/50752153

作为一个蒟蒻,稍微写一点自己的理解...

如果P是素数,我们可以用lucas定理直接解决,那么P是合数应该怎么办呢?

首先,考虑把P分解质因数,拆成$${p_0} ^ {k_0} {p_1}^{k_1} {p_2} ^ {k_2}...$$的形式,再对每一个p^k计算,最后用CRT(中国剩余定理)合并。

然后就是怎么算组合数对质数的幂取模的问题了。我们设$$f(n)=\prod_{i=1}^n i[i\mod p\ne0]\mod {pk}$$,就是1~n中非p的倍数的积对pk取模,那么只要先把n!,m!,(n-m)!里的p的倍数的因子p全部提出来,然后求出f(n),f(m),f(n-m)的值就行了。

求f(n)可以用递归,把n按照p^k分段,整段的可以一起算,零散的一段直接暴力计算,然后乘上f(n/p),表示所有的p的倍数除以p后f的值。总的时间复杂度$$O(P log N)$$。

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define TR(x) printf(#x"=%d\n", x)
const int MAXN=100005;
int f[MAXN];
int p[15], k[15], pk[15], s[15], phi[15], np;
int mpow(int a,int b,int m){int r=1;for(;b;b>>=1,a=(ll)a*a%m)if(b&1)r=(ll)r*a%m;return r;}
int calc(int n, int x){
if(!n) return 1;
int q=pk[x], t=n/q, r=1;
if(t){
for(int i=1; i<q; ++i) if(i%p[x]) r=(ll)r*i%q;
r=mpow(r,t,q);
}
for(int i=n%q; i>=1; --i) if(i%p[x]) r=(ll)r*i%q;
return (ll)r*calc(n/p[x], x)%pk[x];
}
int cntp(int n, int p){
int r=0;
while(n) r+=(n/=p);
return r;
}
int main(){
int n, m, P, ans=0;
scanf("%d%d%d", &n, &m, &P);
for(int i=2, tp=P; i<=tp; ++i) if(tp%i==0){
p[np]=i; pk[np]=1;
while(tp%i==0) tp/=i, k[np]++, pk[np]*=i;
phi[np]=pk[np]/i*(i-1); np++;
}
for(int i=0; i<np; ++i){
int t=cntp(n,p[i])-cntp(m,p[i])-cntp(n-m,p[i]);
s[i]=mpow(p[i],t,pk[i]);
s[i]=(ll)s[i]*calc(n,i)%pk[i];
s[i]=(ll)s[i]*mpow(calc(m,i),phi[i]-1,pk[i])%pk[i];
s[i]=(ll)s[i]*mpow(calc(n-m,i),phi[i]-1,pk[i])%pk[i];
}
for(int i=0; i<np; ++i){
ans=(ans+(ll)s[i]*(P/pk[i])%P*mpow(P/pk[i],phi[i]-1,pk[i])%P)%P;
}
printf("%d\n", ans);
return 0;
}

BZOJ 3656: 异或 (组合数取模 CRT)的更多相关文章

  1. BZOJ_2142_礼物_扩展lucas+组合数取模+CRT

    BZOJ_2142_礼物_扩展lucas+组合数取模 Description 一年一度的圣诞节快要来到了.每年的圣诞节小E都会收到许多礼物,当然他也会送出许多礼物.不同的人物在小E 心目中的重要性不同 ...

  2. [BZOJ 3129] [Sdoi2013] 方程 【容斥+组合数取模+中国剩余定理】

    题目链接:BZOJ - 3129 题目分析 使用隔板法的思想,如果没有任何限制条件,那么方案数就是 C(m - 1, n - 1). 如果有一个限制条件是 xi >= Ai ,那么我们就可以将 ...

  3. 组合数取模(lucas定理+CRT合并)(AC)

    #include<bits/stdc++.h> #define re register #define int long long using namespace std; ; inlin ...

  4. 组合数取模Lucas定理及快速幂取模

    组合数取模就是求的值,根据,和的取值范围不同,采取的方法也不一样. 下面,我们来看常见的两种取值情况(m.n在64位整数型范围内) (1)  , 此时较简单,在O(n2)可承受的情况下组合数的计算可以 ...

  5. 排列组合+组合数取模 HDU 5894

    // 排列组合+组合数取模 HDU 5894 // 题意:n个座位不同,m个人去坐(人是一样的),每个人之间至少相隔k个座位问方案数 // 思路: // 定好m个人 相邻人之间k个座位 剩下就剩n-( ...

  6. hdu 3944 DP? 组合数取模(Lucas定理+预处理+帕斯卡公式优化)

    DP? Problem Description Figure 1 shows the Yang Hui Triangle. We number the row from top to bottom 0 ...

  7. lucas定理解决大组合数取模

    LL MyPow(LL a, LL b) { LL ret = ; while (b) { ) ret = ret * a % MOD; a = a * a % MOD; b >>= ; ...

  8. 2015 ICL, Finals, Div. 1 Ceizenpok’s formula(组合数取模,扩展lucas定理)

    J. Ceizenpok’s formula time limit per test 2 seconds memory limit per test 256 megabytes input stand ...

  9. 组合数取模&&Lucas定理题集

    题集链接: https://cn.vjudge.net/contest/231988 解题之前请先了解组合数取模和Lucas定理 A : FZU-2020  输出组合数C(n, m) mod p (1 ...

随机推荐

  1. 进程间通讯-3(Manager)-实现数据的同时修改

    Manager 可以实现列表,字典,变量,锁,信号量,事件等的数据之间的共享.Manager已经默认加锁了.控制数据不会乱. 实现了不同进程之间数据的共享,并且可以同时修改. from multipr ...

  2. 【BZOJ3240】【NOI2013】矩阵游戏(数论)

    [BZOJ3240][NOI2013]矩阵游戏(数论) 题面 BZOJ 题解 搞什么矩阵十进制快速幂加卡常? 直接数学推导不好吗? 首先观察如何从每一行的第一个推到最后一个 \(f[i]=a·f[i- ...

  3. POJ3581:Sequence——题解

    http://poj.org/problem?id=3581 给一串数,将其分成三个区间并且颠倒这三个区间,使得新数列字典序最小. 参考:http://blog.csdn.net/libin56842 ...

  4. BZOJ3456:城市规划——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=3456 求出n个点的简单(无重边无自环)无向连通图数目 模数很熟悉,先敲一个NTT. 然后通过推导式 ...

  5. BZOJ4889 & 洛谷3759:[TJOI2017]不勤劳的图书管理员——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=4889 https://www.luogu.org/problemnew/show/P3759 加里 ...

  6. BZOJ4566:[HAOI2016]找相同字符——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=4566 https://www.luogu.org/problemnew/show/P3181 给定 ...

  7. 洛谷4577 & LOJ2521:[FJOI2018]领导集团问题——题解

    https://www.luogu.org/problemnew/show/P4577 https://loj.ac/problem/2521 参考:https://www.luogu.org/blo ...

  8. android eclipse ndk使用记录

    为方便开发jni程序,android提供了ndk包来简化开发过程,避免开发人员下载完整的平台代码,并且可以在windows环境下集成到eclipse里面,大大加快了开发速度.这里记录下一个简单例子. ...

  9. Java的四种引用?用到的场景?

    在JDK 1.2以前的版本中,若一个对象不被任何变量引用,那么程序就无法再使用这个对象.也就是说,只有对象处于可触及(reachable)状态,程序才能使用它.从JDK 1.2版本开始,把对象的引用分 ...

  10. 初学VS的目录结构

    工程目录下各文件的含义 一般大部分的文章可能介绍到上面就算结束了,但我这还没有.创建工程产生的各个文件都你知道是什么用的吗? 如果你是一个初学者,你可能会不知道(老手请跳过本文).Ok,我就带你逐一了 ...