【洛谷 P4320】 道路相遇 (圆方树,LCA)
题目链接
题意:给一张无向图和\(M\)个询问,问\(u,v\)之间的路径的必经之点的个数。
对图建出圆方树,然后必经之点就是两点路径经过的原点个数,用\((dep[u]+dep[v]-dep[LCA]*2)/2+1\)即可算出。
什么你不知道圆方树(说的跟我知道一样)
\(APIO2018\)出来的黑科技,详见\(APIO2018\)铁人两项。
就是对每个点双新建一个点,然后让点双里所有点都对这个点连边。
看图。

#include <cstdio>
const int MAXN = 500010;
const int MAXM = 1000010;
namespace IO{
int xjc; char ch;
inline int read(){
xjc = 0; ch = getchar();
while(ch < '0' || ch > '9') ch = getchar();
while(ch >= '0' && ch <= '9'){ xjc = xjc * 10 + ch - '0'; ch = getchar(); }
return xjc;
}
}using namespace IO;
inline int min(int a, int b){
return a > b ? b : a;
}
inline void swap(int &a, int &b){
xjc = a; a = b; b = xjc;
}
int n, m, k, a, b, cha;
struct Edge{
int next, to;
};
struct Graph{
int head[MAXN << 1], num;
Edge e[MAXM << 1];
inline void Add(int from, int to){
e[++num].to = to; e[num].next = head[from]; head[from] = num;
e[++num].to = from; e[num].next = head[to]; head[to] = num;
}
}G, T;
int dfn[MAXN], low[MAXN], vis[MAXN], stack[MAXN], f[MAXN << 1][20], dep[MAXN << 1], top, id, cnt;
void Tarjan(int u){
dfn[u] = low[u] = ++id; stack[++top] = u;
for(int i = G.head[u]; i; i = G.e[i].next)
if(!dfn[G.e[i].to]){
Tarjan(G.e[i].to);
low[u] = min(low[u], low[G.e[i].to]);
if(low[G.e[i].to] >= dfn[u]){
T.Add(u, ++cnt);
do T.Add(stack[top], cnt);
while(stack[top--] != G.e[i].to);
}
}
else low[u] = min(low[u], dfn[G.e[i].to]);
}
void getDF(int u, int fa){
f[u][0] = fa; dep[u] = dep[fa] + 1;
for(int i = T. head[u]; i; i = T.e[i].next)
if(T.e[i].to != fa)
getDF(T.e[i].to, u);
}
void make_ST(){
for(int j = 1; j <= 19; ++j)
for(int i = 1; i <= cnt; ++i)
f[i][j] = f[f[i][j - 1]][j - 1];
}
inline int LCA(int u, int v){
if(dep[u] < dep[v]) swap(u, v);
cha = dep[u] - dep[v];
if(cha)
for(int i = 0; i <= 19; ++i)
if(cha & (1 << i))
u = f[u][i];
if(u == v) return u;
for(int i = 19; ~i; --i)
if(f[u][i] != f[v][i])
u = f[u][i], v = f[v][i];
return f[u][0];
}
int main(){
cnt = n = read(); m = read();
for(int i = 1; i <= m; ++i)
G.Add(read(), read());
Tarjan(1);
getDF(1, 0);
make_ST();
k = read();
while(k--){
a = read(); b = read();
printf("%d\n", ((dep[a] + dep[b] - (dep[LCA(a, b)] << 1)) >> 1) + 1);
}
return 0;
}
【洛谷 P4320】 道路相遇 (圆方树,LCA)的更多相关文章
- 【luogu4320】道路相遇 (圆方树 + LCA)
Description 给你一张\(~n~\)个点\(~m~\)条边的无向图,保证无重边无自环, 共\(~q~\)组询问求\(~x~\)到\(~y~\)的路径上必经的点数. Solution ...
- 【刷题】洛谷 P4320 道路相遇
题目描述 在 H 国的小 w 决定到从城市 \(u\) 到城市 \(v\) 旅行,但是此时小 c 由于各种原因不在城市 \(u\),但是小 c 决定到在中途与小 w 相遇 由于 H 国道路的原因,小 ...
- luoguP4320 道路相遇 圆方树
标题已经告诉你怎么做了..... 两点间的圆点个数即为所求 建出圆方树后打个树剖求$lca$就行..... 复杂度$O(n + q \log n)$ #include <cstdio> # ...
- [洛谷P4320]道路相遇
题目大意:基本同上一题[bzoj5329][Sdoi2018]战略游戏,只是每个点集内只有两个点,且只有一组询问而已.(双倍经验?我反正就直接改了一下代码就交了) 题解:同上一题(链接见“题目大意”) ...
- P4320-道路相遇,P5058-[ZJOI2004]嗅探器【圆方树,LCA】
两题差不多就一起写了 P4320-道路相遇 题目链接:https://www.luogu.com.cn/problem/P4320 题目大意 \(n\)个点\(m\)条边的一张图,\(q\)次询问两个 ...
- Traffic Real Time Query System 圆方树+LCA
题目描述 City C is really a nightmare of all drivers for its traffic jams. To solve the traffic problem, ...
- 图论杂项细节梳理&模板(虚树,圆方树,仙人掌,欧拉路径,还有。。。)
orzYCB 虚树 %自为风月马前卒巨佬% 用于优化一类树形DP问题. 当状态转移只和树中的某些关键点有关的时候,我们把这些点和它们两两之间的LCA弄出来,以点的祖孙关系连成一棵新的树,这就是虚树. ...
- 洛谷P4606 [SDOI2018]战略游戏 【圆方树 + 虚树】
题目链接 洛谷P4606 双倍经验:弱化版 题解 两点之间必经的点就是圆方树上两点之间的圆点 所以只需建出圆方树 每次询问建出虚树,统计一下虚树边上有多少圆点即可 还要讨论一下经不经过根\(1\)的情 ...
- 洛谷P4630 [APIO2018] Duathlon 铁人两项 【圆方树】
题目链接 洛谷P4630 题解 看了一下部分分,觉得树的部分很可做,就相当于求一个点对路径长之和的东西,考虑一下能不能转化到一般图来? 一般图要转为树,就使用圆方树呗 思考一下发现,两点之间经过的点双 ...
随机推荐
- 基于gulp的前端自动化开发构建新
关于gulp的使用,已经在之前写过一篇文章,但是遗留了一个问题.问题是实现文件的增量式更新,就是给html引入的js和css文件打上标记.每次更新标记更新. 上篇文章想通过开发同时实现标记的实时更新, ...
- str.substring(beginIndex,endIndex)-008
// 将字符串str前n位放在后面,返回新的字符串 public String headToTail(String str,int n){ if(n==0){ System.out.println(s ...
- SPD各模块总结
一.用户角色绑定节点 1.库存操作员.库存主管.验货操作员:绑定任一节点 2.采购操作员.公药操作员:只能绑定药库节点 3.退库操作员.药品申领员:绑定药库以外的节点 二.采购计划模块 1.采购计划的 ...
- Python logging(日志)模块
python日志模块 内容简介 1.日志相关概念 2.logging模块简介 3.logging模块函数使用 4.logging模块日志流处理流程 5.logging模块组件使用 6.logging配 ...
- 安装单机Hadoop系统(完整版)——Mac
在这个阴雨绵绵的下午,没有睡午觉的我带着一双惺忪的眼睛坐在了电脑前,泡上清茶,摸摸已是略显油光的额头(笑cry),,奋斗啊啊啊啊!!%>_<% 1.课程回顾. 1.1 Hadoop系统运行 ...
- [BZOJ4942] [NOI2017]整数
题目背景 在人类智慧的山巅,有着一台字长为1048576位(此数字与解题无关)的超级计算机,著名理论计算机科 学家P博士正用它进行各种研究.不幸的是,这天台风切断了电力系统,超级计算机 无法工作,而 ...
- [洛谷P3181][HAOI2016]找相同字符
题目大意:给你两个字符串,求从两个字符串中各选择一个字串使得这两个字串相同的方案数. 题解:建广义$SAM$,对每个点求出在第一个串中出现次数和第二个串中出现次数,乘起来就行了 卡点:无 C++ Co ...
- 【bzoj】3477: [Usaco2014 Mar]Sabotage 01分数规划
这题算是01分数规划吧2333 sum-a[i]*x[i]=c*(n-x[i]) 化简一下就是sum-(a[i]-c)*x[i]-nc=0,每次找最大的(a[i]-c)*x[i](子段和),如果结果& ...
- BZOJ2668 [cqoi2012]交换棋子 【费用流】
题目链接 BZOJ2668 题解 容易想到由\(S\)向初始的黑点连边,由终态的黑点向\(T\)连边,然后相邻的点间连边 但是这样满足不了交换次数的限制,也无法计算答案 考虑如何满足一个点的交换次数限 ...
- 「LibreOJ NOIP Round #1」七曜圣贤
题目啰嗦:支持三个操作: 不可重复集合:1.加入一个数 2.删除一个数 3.恢复目前最早的一次删除的数 操作可能不合法,每次有效操作之后求集合的mex(最小没有出现过的数) 50组数据+1e6,必须O ...