最长公共子序列

时间限制:3000 ms  |  内存限制:65535 KB
难度:3
 
描述
咱们就不拐弯抹角了,如题,需要你做的就是写一个程序,得出最长公共子序列。
tip:最长公共子序列也称作最长公共子串(不要求连续),英文缩写为LCS(Longest Common Subsequence)。其定义是,一个序列 S ,如果分别是两个或多个已知序列的子序列,且是所有符合此条件序列中最长的,则 S 称为已知序列的最长公共子序列。
 
输入
第一行给出一个整数N(0<N<100)表示待测数据组数
接下来每组数据两行,分别为待测的两组字符串。每个字符串长度不大于1000.
输出
每组测试数据输出一个整数,表示最长公共子序列长度。每组结果占一行。
样例输入
2
asdf
adfsd
123abc
abc123abc
样例输出
3
6
类似于苹果那道题;
代码
 #include<stdio.h>

 #include<string.h>

 int max[][];

 int main()

 {
int n,xlen,ylen,i,j; char x[]; char y[]; scanf("%d",&n); getchar(); while(n--) { gets(x);gets(y); xlen=strlen(x); ylen=strlen(y); for(i=;i<xlen;i++) for(j=;j<ylen;j++) max[i][j]=;//初始化数组重置为0 for(i=;i<xlen;i++) for(j=;j<ylen;j++) { if(x[i]==y[j]) //当出现两个字符串中有相同的字符时,开始计算 max[i+][j+]=max[i][j]+;//出现一个时,最大的加上一个,类似于,苹果那道题; else if(max[i+][j]>max[i][j+]) max[i+][j+]=max[i+][j]; else max[i+][j+]=max[i][j+]; } printf("%d\n",max[xlen][ylen]); } return }

ny36 最长公共子序列的更多相关文章

  1. 用python实现最长公共子序列算法(找到所有最长公共子串)

    软件安全的一个小实验,正好复习一下LCS的写法. 实现LCS的算法和算法导论上的方式基本一致,都是先建好两个表,一个存储在(i,j)处当前最长公共子序列长度,另一个存储在(i,j)处的回溯方向. 相对 ...

  2. 动态规划之最长公共子序列(LCS)

    转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...

  3. [Data Structure] LCSs——最长公共子序列和最长公共子串

    1. 什么是 LCSs? 什么是 LCSs? 好多博友看到这几个字母可能比较困惑,因为这是我自己对两个常见问题的统称,它们分别为最长公共子序列问题(Longest-Common-Subsequence ...

  4. 动态规划求最长公共子序列(Longest Common Subsequence, LCS)

    1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...

  5. LintCode 77: 最长公共子序列

    public class Solution { /** * @param A, B: Two string. * @return: the length of the longest common s ...

  6. 删除部分字符使其变成回文串问题——最长公共子序列(LCS)问题

    先要搞明白:最长公共子串和最长公共子序列的区别.    最长公共子串(Longest Common Substirng):连续 最长公共子序列(Longest Common Subsequence,L ...

  7. LCS(Longest Common Subsequence 最长公共子序列)

    最长公共子序列 英文缩写为LCS(Longest Common Subsequence).其定义是,一个序列 S ,如果分别是两个或多个已知序列的子序列,且是所有符合此条件序列中最长的,则 S 称为已 ...

  8. 准备NOIP2017 最长公共子序列(模版)

    一些概念: (1)子序列: 一个序列A = a1,a2,--an,中任意删除若干项,剩余的序列叫做A的一个子序列.也可以认为是从序列A按原顺序保留任意若干项得到的序列.例如:   对序列 1,3,5, ...

  9. 51nod 1006 最长公共子序列Lcs(经典动态规划)

    传送门 Description 给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的).   比如两个串为:   abcicba abdkscab   ab是两个串的子序列,abc也是 ...

随机推荐

  1. SSO是什么?

    SSO英文全称Single Sign On,单点登录.SSO是在多个应用系统中,用户只需要登录一次就可以访问所有相互信仸的应用系统.它包括可以将这次主要的登录映射到其他应用中用亍同一个用户的登录的机制 ...

  2. js 获取地址栏的值乱码问题

    传过去的参数是:(01) 0 6936841 40029 4. 接收的参数的:'(01)%200%206936841%2040029%204'. 因为包含空格,或者中文,就会乱码.要想不乱码,接收的使 ...

  3. Systemd 基础(转)

    Systemd 是 Linux 系统工具,用来启动守护进程,已成为大多数发行版的标准配置. 原文链接:http://www.ruanyifeng.com/blog/2016/03/systemd-tu ...

  4. FFmpeg基础库编程开发学习笔记——视频常见格式

    声明一下:这些关于ffmpeg的文章仅仅是用于记录我的学习历程和以便于以后查阅,文章中的一些文字可能是直接摘自于其它文章.书籍或者文献,学习ffmpeg相关知识是为了使用在Android上,我也才是刚 ...

  5. 深入PHP内核之数组

    定义: PHP 中的数组实际上是一个有序映射.映射是一种把 values 关联到 keys 的类型.此类型在很多方面做了优化,因此可以把它当成真正的数组,或列表(向量),散列表(是映射的一种实现),字 ...

  6. HDUOJ1060Leftmost Digit

    Leftmost Digit Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)To ...

  7. 使用Promise

    Promise所要解决的问题:回调地狱 asyncTask1(data, function (data1){ asyncTask2(data1, function (data2){ asyncTask ...

  8. PLSQL常用配置之窗口/版面保存、SQL格式化/美化、SQL注释\去掉注释等快捷键配置、登陆历史修改配置

    http://blog.csdn.net/hyeidolon/article/details/8251791   PLSQL常用配置之窗口/版面保存.SQL格式化/美化.SQL注释\去掉注释等快捷键配 ...

  9. Linux命令-终止进程命令:killall

    强制杀死所有进程,注意它后面跟着是进程名而不是进程号 killall - httpd 杀死apache所有进程pstree -p | grep httpd 查看apache进程就没有了service ...

  10. 【js】indexOf()

    /** **位置方法indexOf()和lastIndexOf() **这两个方法都接收两个参数:要查找的项和(可选的)表示查找起点位置的索引 **indexOf()方法从数组的开头(位置0)开始向后 ...