BZOJ 3053: The Closest M Points(K-D Tree)
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 1235 Solved: 418
[Submit][Status][Discuss]
Description
The course of Software Design and Development Practice is objectionable. ZLC is facing a serious problem .There are many points in K-dimensional space .Given a point. ZLC need to find out the closest m points. Euclidean distance is used as the distance metric between two points. The Euclidean distance between points p and q is the length of the line segment connecting them.In Cartesian coordinates, if p = (p1, p2,..., pn) and q = (q1, q2,..., qn) are two points in Euclidean n-space, then the distance from p to q, or from q to p is given by:
D(p,q)=D(q,p)=sqrt((q1-p1)^2+(q2-p2)^2+(q3-p3)^2…+(qn-pn)^2
Can you help him solve this problem?
软工学院的课程很讨厌!ZLC同志遇到了一个头疼的问题:在K维空间里面有许多的点,对于某些给定的点,ZLC需要找到和它最近的m个点。
(这里的距离指的是欧几里得距离:D(p, q) = D(q, p) = sqrt((q1 - p1) ^ 2 + (q2 - p2) ^ 2 + (q3 - p3) ^ 2 + ... + (qn - pn) ^ 2)
ZLC要去打Dota,所以就麻烦你帮忙解决一下了……
【Input】
第一行,两个非负整数:点数n(1 <= n <= 50000),和维度数k(1 <= k <= 5)。
接下来的n行,每行k个整数,代表一个点的坐标。
接下来一个正整数:给定的询问数量t(1 <= t <= 10000)
下面2*t行:
第一行,k个整数:给定点的坐标
第二行:查询最近的m个点(1 <= m <= 10)
所有坐标的绝对值不超过10000。
有多组数据!
【Output】
对于每个询问,输出m+1行:
第一行:"the closest m points are:" m为查询中的m
接下来m行每行代表一个点,按照从近到远排序。
保证方案唯一,下面这种情况不会出现:
2 2
1 1
3 3
1
2 2
1
Input
In the first line of the text file .there are two non-negative integers n and K. They denote respectively: the number of points, 1 <= n <= 50000, and the number of Dimensions,1 <= K <= 5. In each of the following n lines there is written k integers, representing the coordinates of a point. This followed by a line with one positive integer t, representing the number of queries,1 <= t <=10000.each query contains two lines. The k integers in the first line represent the given point. In the second line, there is one integer m, the number of closest points you should find,1 <= m <=10. The absolute value of all the coordinates will not be more than 10000.
There are multiple test cases. Process to end of file.
Output
For each query, output m+1 lines:
The first line saying :”the closest m points are:” where m is the number of the points.
The following m lines representing m points ,in accordance with the order from near to far
It is guaranteed that the answer can only be formed in one ways. The distances from the given point to all the nearest m+1 points are different. That means input like this:
2 2
1 1
3 3
1
2 2
1
will not exist.
Sample Input
1 1
1 3
3 4
2
2 3
2
2 3
1
Sample Output
1 3
3 4
the closest 1 points are:
1 3
HINT
Source
#include<cstdio>
#include<queue>
#include<algorithm>
using namespace std;
const int MAXN = 1e6 + , INF = 1e9 + ;
inline int read() {
char c = getchar(); int x = , f = ;
while(c < '' || c > '') {if(c == '-')f = -; c = getchar();}
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * f;
}
int N, K, WD, root;
int out[MAXN];
struct Point {
int x[];
bool operator < (const Point &rhs) const {
return x[WD] < rhs.x[WD];
}
}P[MAXN], ask;
#define ls(x) T[x].ls
#define rs(x) T[x].rs
struct KDTree {
int mn[], mx[], ls, rs;
Point tp;
}T[MAXN];
struct Ans {
int val, ID;
bool operator < (const Ans &rhs) const{
return val < rhs.val;
}
};
priority_queue<Ans>Q;
int sqr(int x) {
return x * x;
}
void update(int k) {
for(int i = ; i <= K; i++) {
T[k].mn[i] = T[k].mx[i] = T[k].tp.x[i];
if(ls(k)) T[k].mn[i] = min(T[k].mn[i], T[ls(k)].mn[i]), T[k].mx[i] = max(T[k].mx[i], T[ls(k)].mx[i]);
if(rs(k)) T[k].mn[i] = min(T[k].mn[i], T[rs(k)].mn[i]), T[k].mx[i] = max(T[k].mx[i], T[rs(k)].mx[i]);
}
}
int Build(int l, int r, int wd) {
WD = wd;
if(l > r) return ;
int mid = l + r >> ;
nth_element(P + l, P + mid, P + r + );
T[mid].tp = P[mid];
T[mid].ls = Build(l, mid - , (wd + ) % K);
T[mid].rs = Build(mid + , r, (wd + ) % K);
update(mid);
return mid;
}
int GetMinDis(Point a, KDTree b) {
//if(b) return INF;
int ans = ;
for(int i = ; i <= K; i++) {
if(a.x[i] < b.mn[i]) ans += sqr(b.mn[i] - a.x[i]);
if(a.x[i] > b.mx[i]) ans += sqr(a.x[i] - b.mx[i]);
}
return ans;
}
int Dis(Point a, Point b) {
int ans = ;
for(int i = ; i <= K; i++)
ans += sqr(abs(a.x[i] - b.x[i]));
return ans;
}
void Query(int k) {
int ans = Dis(ask, T[k].tp);
if(ans < Q.top().val) Q.pop(), Q.push((Ans){ans, k});
int disl = INF, disr = INF;
if(ls(k)) disl = GetMinDis(ask, T[ls(k)]);
if(rs(k)) disr = GetMinDis(ask, T[rs(k)]);
if(disl < disr) {
if(disl < Q.top().val) Query(ls(k));
if(disr < Q.top().val) Query(rs(k));
}
else {
if(disr < Q.top().val) Query(rs(k));
if(disl < Q.top().val) Query(ls(k));
}
} main() {
while(scanf("%d %d", &N, &K) != EOF) {
for(int i = ; i <= N; i++)
for(int j = ; j <= K; j++)
P[i].x[j] = read();
root = Build(, N, );
int T = read();
while(T--) {
for(int i = ; i <= K; i++) ask.x[i] = read();
int M = read();
printf("the closest %d points are:\n", M);
for(int i = ; i <= M; i++) Q.push((Ans){INF, });
Query(root);
for(int i = ; i <= M; i++)
out[i] = Q.top().ID, Q.pop();
for(int i = M; i >= ; i--)
for(int j = ; j <= K; j++)
printf("%d%c", P[out[i]].x[j], j != K ? ' ' : '\n');
}
}
}
BZOJ 3053: The Closest M Points(K-D Tree)的更多相关文章
- BZOJ 3053 The Closest M Points
[题目分析] 典型的KD-Tree例题,求k维空间中的最近点对,只需要在判断的过程中加上一个优先队列,就可以了. [代码] #include <cstdio> #include <c ...
- bzoj 3053: The Closest M Points【KD-tree】
多维KDtree板子 左右儿子的估价用mn~mx当区间,假设区间里的数都存在:k维轮着做割点 #include<iostream> #include<cstdio> #incl ...
- 【BZOJ】3053: The Closest M Points(kdtree)
http://www.lydsy.com/JudgeOnline/problem.php?id=3053 本来是1a的QAQ.... 没看到有多组数据啊.....斯巴达!!!!!!!!!!!!!!!! ...
- 【BZOJ】【3053】The Closest M Points
KD-Tree 题目大意:K维空间内,与给定点欧几里得距离最近的 m 个点. KD树啊……还能怎样啊……然而扩展到k维其实并没多么复杂?除了我已经脑补不出建树过程……不过代码好像变化不大>_&g ...
- bzoj 3053 HDU 4347 : The Closest M Points kd树
bzoj 3053 HDU 4347 : The Closest M Points kd树 题目大意:求k维空间内某点的前k近的点. 就是一般的kd树,根据实测发现,kd树的两种建树方式,即按照方差 ...
- 【BZOJ 3053】The Closest M Points
KDTree模板,在m维空间中找最近的k个点,用的是欧几里德距离. 理解了好久,昨晚始终不明白那些“估价函数”,后来才知道分情况讨论,≤k还是=k,在当前这一维度距离过线还是不过线,过线则要继续搜索另 ...
- The Closest M Points BZOJ 3053
The Closest M Points [问题描述] 软工学院的课程很讨厌!ZLC同志遇到了一个头疼的问题:在K维空间里面有许多的点,对于某些给定的点,ZLC需要找到和它最近的m个点. (这里的距离 ...
- 【kd-tree】bzoj3053 The Closest M Points
同p2626.由于K比较小,所以不必用堆. #include<cstdio> #include<cstring> #include<cmath> #include& ...
- 【HDOJ】4347 The Closest M Points
居然是KD解. /* 4347 */ #include <iostream> #include <sstream> #include <string> #inclu ...
随机推荐
- FineReport移动端如何获取地址位置
对于企业大多数员工来说,由于其工作位置是固定的,可以有多种方式进行上班打卡签到以保证该员工有按时正常来上班,但是对于经常需要出差,去客户现场的员工来说,就无法保证他们是否有去上班,所以希望能通过手机位 ...
- Difference between scipy.fftpack and numpy.fft
scipy.fftpack 和 numpy.fft 的区别 When applying scipy.fftpack.rfft and numpy.fft.rfft I get the followin ...
- Python爬虫教程-03-使用 chardet 检测编码
Spider-03-使用chardet 继续学习python爬虫,我们经常出现解码问题,因为所有的页面编码都不统一,我们使用chardet检测页面的编码,尽可能的减少编码问题的出现 网页编码问题解决 ...
- SparseArray代替HashMap
相信大家都明白,手机软件的开发不同于PC软件的开发,因为手机性能相对有限,内存也有限,所谓“寸土寸金”,可能稍有不慎,就会导致性能的明显降低.Android为了方便开发者,特意在android.uti ...
- 毕向东_Java基础视频教程第19天_IO流(18~19)
第19天-18-IO流(流操作规律 - 1) 通过三个步骤来明确"流操作"的规律: 明确数据流的"源和目的" 源, 输入流: InputStream/Reade ...
- Git与Github。
Git是一款免费,开源的分布是版本,用于敏捷高效的处理任何或小或大的项目.分布式相对于集中式的最大区别在于开发者可以提到本地,每个开发者通过克隆,在本地磁盘内拷贝一个完整的GIt仓库. Git的功能特 ...
- 新特性之MAPI over HTTP \ 配置 MAPI over HTTP
Exchange 2016 中的 MAPI over HTTP https://docs.microsoft.com/zh-cn/Exchange/clients/mapi-over-http/map ...
- linux下常用命令:
常用指令 ls 显示文件或目录 -l 列出文件详细信息l(list) -a 列出当前目录下所有文件及目录,包括隐藏的a(all) mkdir ...
- Kafka生产者producer简要总结
Kafka producer在设计上要比consumer简单,不涉及复杂的组管理操作,每个producer都是独立进行工作的,与其他producer实例之间没有关联.Producer的主要功能就是向某 ...
- codeforces 453C Little Pony and Summer Sun Celebration
codeforces 453C Little Pony and Summer Sun Celebration 这道题很有意思,虽然网上题解很多了,但是我还是想存档一下我的理解. 题意可以这样转换:初始 ...