BZOJ 3053: The Closest M Points(K-D Tree)
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 1235 Solved: 418
[Submit][Status][Discuss]
Description
The course of Software Design and Development Practice is objectionable. ZLC is facing a serious problem .There are many points in K-dimensional space .Given a point. ZLC need to find out the closest m points. Euclidean distance is used as the distance metric between two points. The Euclidean distance between points p and q is the length of the line segment connecting them.In Cartesian coordinates, if p = (p1, p2,..., pn) and q = (q1, q2,..., qn) are two points in Euclidean n-space, then the distance from p to q, or from q to p is given by:
D(p,q)=D(q,p)=sqrt((q1-p1)^2+(q2-p2)^2+(q3-p3)^2…+(qn-pn)^2
Can you help him solve this problem?
软工学院的课程很讨厌!ZLC同志遇到了一个头疼的问题:在K维空间里面有许多的点,对于某些给定的点,ZLC需要找到和它最近的m个点。
(这里的距离指的是欧几里得距离:D(p, q) = D(q, p) = sqrt((q1 - p1) ^ 2 + (q2 - p2) ^ 2 + (q3 - p3) ^ 2 + ... + (qn - pn) ^ 2)
ZLC要去打Dota,所以就麻烦你帮忙解决一下了……
【Input】
第一行,两个非负整数:点数n(1 <= n <= 50000),和维度数k(1 <= k <= 5)。
接下来的n行,每行k个整数,代表一个点的坐标。
接下来一个正整数:给定的询问数量t(1 <= t <= 10000)
下面2*t行:
第一行,k个整数:给定点的坐标
第二行:查询最近的m个点(1 <= m <= 10)
所有坐标的绝对值不超过10000。
有多组数据!
【Output】
对于每个询问,输出m+1行:
第一行:"the closest m points are:" m为查询中的m
接下来m行每行代表一个点,按照从近到远排序。
保证方案唯一,下面这种情况不会出现:
2 2
1 1
3 3
1
2 2
1
Input
In the first line of the text file .there are two non-negative integers n and K. They denote respectively: the number of points, 1 <= n <= 50000, and the number of Dimensions,1 <= K <= 5. In each of the following n lines there is written k integers, representing the coordinates of a point. This followed by a line with one positive integer t, representing the number of queries,1 <= t <=10000.each query contains two lines. The k integers in the first line represent the given point. In the second line, there is one integer m, the number of closest points you should find,1 <= m <=10. The absolute value of all the coordinates will not be more than 10000.
There are multiple test cases. Process to end of file.
Output
For each query, output m+1 lines:
The first line saying :”the closest m points are:” where m is the number of the points.
The following m lines representing m points ,in accordance with the order from near to far
It is guaranteed that the answer can only be formed in one ways. The distances from the given point to all the nearest m+1 points are different. That means input like this:
2 2
1 1
3 3
1
2 2
1
will not exist.
Sample Input
1 1
1 3
3 4
2
2 3
2
2 3
1
Sample Output
1 3
3 4
the closest 1 points are:
1 3
HINT
Source
#include<cstdio>
#include<queue>
#include<algorithm>
using namespace std;
const int MAXN = 1e6 + , INF = 1e9 + ;
inline int read() {
char c = getchar(); int x = , f = ;
while(c < '' || c > '') {if(c == '-')f = -; c = getchar();}
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * f;
}
int N, K, WD, root;
int out[MAXN];
struct Point {
int x[];
bool operator < (const Point &rhs) const {
return x[WD] < rhs.x[WD];
}
}P[MAXN], ask;
#define ls(x) T[x].ls
#define rs(x) T[x].rs
struct KDTree {
int mn[], mx[], ls, rs;
Point tp;
}T[MAXN];
struct Ans {
int val, ID;
bool operator < (const Ans &rhs) const{
return val < rhs.val;
}
};
priority_queue<Ans>Q;
int sqr(int x) {
return x * x;
}
void update(int k) {
for(int i = ; i <= K; i++) {
T[k].mn[i] = T[k].mx[i] = T[k].tp.x[i];
if(ls(k)) T[k].mn[i] = min(T[k].mn[i], T[ls(k)].mn[i]), T[k].mx[i] = max(T[k].mx[i], T[ls(k)].mx[i]);
if(rs(k)) T[k].mn[i] = min(T[k].mn[i], T[rs(k)].mn[i]), T[k].mx[i] = max(T[k].mx[i], T[rs(k)].mx[i]);
}
}
int Build(int l, int r, int wd) {
WD = wd;
if(l > r) return ;
int mid = l + r >> ;
nth_element(P + l, P + mid, P + r + );
T[mid].tp = P[mid];
T[mid].ls = Build(l, mid - , (wd + ) % K);
T[mid].rs = Build(mid + , r, (wd + ) % K);
update(mid);
return mid;
}
int GetMinDis(Point a, KDTree b) {
//if(b) return INF;
int ans = ;
for(int i = ; i <= K; i++) {
if(a.x[i] < b.mn[i]) ans += sqr(b.mn[i] - a.x[i]);
if(a.x[i] > b.mx[i]) ans += sqr(a.x[i] - b.mx[i]);
}
return ans;
}
int Dis(Point a, Point b) {
int ans = ;
for(int i = ; i <= K; i++)
ans += sqr(abs(a.x[i] - b.x[i]));
return ans;
}
void Query(int k) {
int ans = Dis(ask, T[k].tp);
if(ans < Q.top().val) Q.pop(), Q.push((Ans){ans, k});
int disl = INF, disr = INF;
if(ls(k)) disl = GetMinDis(ask, T[ls(k)]);
if(rs(k)) disr = GetMinDis(ask, T[rs(k)]);
if(disl < disr) {
if(disl < Q.top().val) Query(ls(k));
if(disr < Q.top().val) Query(rs(k));
}
else {
if(disr < Q.top().val) Query(rs(k));
if(disl < Q.top().val) Query(ls(k));
}
} main() {
while(scanf("%d %d", &N, &K) != EOF) {
for(int i = ; i <= N; i++)
for(int j = ; j <= K; j++)
P[i].x[j] = read();
root = Build(, N, );
int T = read();
while(T--) {
for(int i = ; i <= K; i++) ask.x[i] = read();
int M = read();
printf("the closest %d points are:\n", M);
for(int i = ; i <= M; i++) Q.push((Ans){INF, });
Query(root);
for(int i = ; i <= M; i++)
out[i] = Q.top().ID, Q.pop();
for(int i = M; i >= ; i--)
for(int j = ; j <= K; j++)
printf("%d%c", P[out[i]].x[j], j != K ? ' ' : '\n');
}
}
}
BZOJ 3053: The Closest M Points(K-D Tree)的更多相关文章
- BZOJ 3053 The Closest M Points
[题目分析] 典型的KD-Tree例题,求k维空间中的最近点对,只需要在判断的过程中加上一个优先队列,就可以了. [代码] #include <cstdio> #include <c ...
- bzoj 3053: The Closest M Points【KD-tree】
多维KDtree板子 左右儿子的估价用mn~mx当区间,假设区间里的数都存在:k维轮着做割点 #include<iostream> #include<cstdio> #incl ...
- 【BZOJ】3053: The Closest M Points(kdtree)
http://www.lydsy.com/JudgeOnline/problem.php?id=3053 本来是1a的QAQ.... 没看到有多组数据啊.....斯巴达!!!!!!!!!!!!!!!! ...
- 【BZOJ】【3053】The Closest M Points
KD-Tree 题目大意:K维空间内,与给定点欧几里得距离最近的 m 个点. KD树啊……还能怎样啊……然而扩展到k维其实并没多么复杂?除了我已经脑补不出建树过程……不过代码好像变化不大>_&g ...
- bzoj 3053 HDU 4347 : The Closest M Points kd树
bzoj 3053 HDU 4347 : The Closest M Points kd树 题目大意:求k维空间内某点的前k近的点. 就是一般的kd树,根据实测发现,kd树的两种建树方式,即按照方差 ...
- 【BZOJ 3053】The Closest M Points
KDTree模板,在m维空间中找最近的k个点,用的是欧几里德距离. 理解了好久,昨晚始终不明白那些“估价函数”,后来才知道分情况讨论,≤k还是=k,在当前这一维度距离过线还是不过线,过线则要继续搜索另 ...
- The Closest M Points BZOJ 3053
The Closest M Points [问题描述] 软工学院的课程很讨厌!ZLC同志遇到了一个头疼的问题:在K维空间里面有许多的点,对于某些给定的点,ZLC需要找到和它最近的m个点. (这里的距离 ...
- 【kd-tree】bzoj3053 The Closest M Points
同p2626.由于K比较小,所以不必用堆. #include<cstdio> #include<cstring> #include<cmath> #include& ...
- 【HDOJ】4347 The Closest M Points
居然是KD解. /* 4347 */ #include <iostream> #include <sstream> #include <string> #inclu ...
随机推荐
- 搭建hustoj
环境:centos6.5 + LAMP环境 LAMP环境的搭建可以参考下面这篇文章 http://www.cnblogs.com/yoke/p/7257184.html 搭建完LAMP环境之后可以按照 ...
- Android 简单图片浏览器 读取sdcard图片+形成缩略图+Gallery
1.读取SD卡上面的图片信息 //想要的返回值所在的列 String[] projection = { MediaStore.Images.Thumbnails._ID}; //图片信息存储在 and ...
- php中http_build_query函数
http_build_query ( array $formdata [, string $numeric_prefix ] ) 使用给出的关联(或下标)数组生成一个经过 URL-encode 的请求 ...
- 微信小程序-03-小程序开发框架
微信小程序-03-小程序开发框架 官方文档: https://developers.weixin.qq.com/miniprogram/dev/framework/MINA.html 小程序开发框架 ...
- ethcode
pragma solidity ^0.4.0;contract Ballot { struct Voter { uint weight; bool voted; uint8 vote; address ...
- Linux常用命令(二)————压缩+解压
tar -c: 建立压缩档案-x:解压-t:查看内容-r:向压缩归档文件末尾追加文件-u:更新原压缩包中的文件 这五个是独立的命令,压缩解压都要用到其中一个,可以和别的命令连用但只能用其中一个.下面的 ...
- java笔记--ASCII编码认知和转换
ASCII是基于拉丁字母的一套电脑编码系统,主要用于显示英语字符是当今最通用的单字节编码.包括128个字符. --如果朋友您想转载本文章请注明转载地址"http://www.cnblogs. ...
- Linux命令--压缩解压(简化版)
Linux tar.gz.tar.bz2.zip 等解压缩.压缩命令详解(简化版) Linux 常用的压缩与解压缩命令有:tar.gzip.gunzip.bzip2.bunzip2.compress ...
- 高可用web框架
nginx nginx简介 Nginx是一个自由.开源.高性能及轻量级的HTTP服务器及反转代理服务器.Nginx以其高性能.稳定.功能丰富.配置简单及占用系统资源少而著称. Nginx 超越 Apa ...
- facebook开源的代码审核工具phabricator
主页地址:http://phabricator.org/