Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 1235  Solved: 418
[Submit][Status][Discuss]

Description

The course of Software Design and Development Practice is objectionable. ZLC is facing a serious problem .There are many points in K-dimensional space .Given a point. ZLC need to find out the closest m points. Euclidean distance is used as the distance metric between two points. The Euclidean distance between points p and q is the length of the line segment connecting them.In Cartesian coordinates, if p = (p1, p2,..., pn) and q = (q1, q2,..., qn) are two points in Euclidean n-space, then the distance from p to q, or from q to p is given by:
D(p,q)=D(q,p)=sqrt((q1-p1)^2+(q2-p2)^2+(q3-p3)^2…+(qn-pn)^2
Can you help him solve this problem?

软工学院的课程很讨厌!ZLC同志遇到了一个头疼的问题:在K维空间里面有许多的点,对于某些给定的点,ZLC需要找到和它最近的m个点。

(这里的距离指的是欧几里得距离:D(p, q) = D(q, p) =  sqrt((q1 - p1) ^ 2 + (q2 - p2) ^ 2 + (q3 - p3) ^ 2 + ... + (qn - pn) ^ 2)

ZLC要去打Dota,所以就麻烦你帮忙解决一下了……

【Input】

第一行,两个非负整数:点数n(1 <= n <= 50000),和维度数k(1 <= k <= 5)。
接下来的n行,每行k个整数,代表一个点的坐标。
接下来一个正整数:给定的询问数量t(1 <= t <= 10000)
下面2*t行:
  第一行,k个整数:给定点的坐标
  第二行:查询最近的m个点(1 <= m <= 10)

所有坐标的绝对值不超过10000。
有多组数据!

【Output】

对于每个询问,输出m+1行:
第一行:"the closest m points are:" m为查询中的m
接下来m行每行代表一个点,按照从近到远排序。

保证方案唯一,下面这种情况不会出现:
2 2
1 1
3 3
1
2 2
1

Input

In the first line of the text file .there are two non-negative integers n and K. They denote respectively: the number of points, 1 <= n <= 50000, and the number of Dimensions,1 <= K <= 5. In each of the following n lines there is written k integers, representing the coordinates of a point. This followed by a line with one positive integer t, representing the number of queries,1 <= t <=10000.each query contains two lines. The k integers in the first line represent the given point. In the second line, there is one integer m, the number of closest points you should find,1 <= m <=10. The absolute value of all the coordinates will not be more than 10000.
There are multiple test cases. Process to end of file.

Output

For each query, output m+1 lines:
The first line saying :”the closest m points are:” where m is the number of the points.
The following m lines representing m points ,in accordance with the order from near to far
It is guaranteed that the answer can only be formed in one ways. The distances from the given point to all the nearest m+1 points are different. That means input like this:
2 2
1 1
3 3
1
2 2
1
will not exist.

Sample Input

3 2
1 1
1 3
3 4
2
2 3
2
2 3
1

Sample Output

the closest 2 points are:
1 3
3 4
the closest 1 points are:
1 3

HINT

 

Source

 
真正意义上的的K-D Tree
就是把二维扩展到了$k$维
这样只需要在建树的时候按照维度循环建就可以了
 
#include<cstdio>
#include<queue>
#include<algorithm>
using namespace std;
const int MAXN = 1e6 + , INF = 1e9 + ;
inline int read() {
char c = getchar(); int x = , f = ;
while(c < '' || c > '') {if(c == '-')f = -; c = getchar();}
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * f;
}
int N, K, WD, root;
int out[MAXN];
struct Point {
int x[];
bool operator < (const Point &rhs) const {
return x[WD] < rhs.x[WD];
}
}P[MAXN], ask;
#define ls(x) T[x].ls
#define rs(x) T[x].rs
struct KDTree {
int mn[], mx[], ls, rs;
Point tp;
}T[MAXN];
struct Ans {
int val, ID;
bool operator < (const Ans &rhs) const{
return val < rhs.val;
}
};
priority_queue<Ans>Q;
int sqr(int x) {
return x * x;
}
void update(int k) {
for(int i = ; i <= K; i++) {
T[k].mn[i] = T[k].mx[i] = T[k].tp.x[i];
if(ls(k)) T[k].mn[i] = min(T[k].mn[i], T[ls(k)].mn[i]), T[k].mx[i] = max(T[k].mx[i], T[ls(k)].mx[i]);
if(rs(k)) T[k].mn[i] = min(T[k].mn[i], T[rs(k)].mn[i]), T[k].mx[i] = max(T[k].mx[i], T[rs(k)].mx[i]);
}
}
int Build(int l, int r, int wd) {
WD = wd;
if(l > r) return ;
int mid = l + r >> ;
nth_element(P + l, P + mid, P + r + );
T[mid].tp = P[mid];
T[mid].ls = Build(l, mid - , (wd + ) % K);
T[mid].rs = Build(mid + , r, (wd + ) % K);
update(mid);
return mid;
}
int GetMinDis(Point a, KDTree b) {
//if(b) return INF;
int ans = ;
for(int i = ; i <= K; i++) {
if(a.x[i] < b.mn[i]) ans += sqr(b.mn[i] - a.x[i]);
if(a.x[i] > b.mx[i]) ans += sqr(a.x[i] - b.mx[i]);
}
return ans;
}
int Dis(Point a, Point b) {
int ans = ;
for(int i = ; i <= K; i++)
ans += sqr(abs(a.x[i] - b.x[i]));
return ans;
}
void Query(int k) {
int ans = Dis(ask, T[k].tp);
if(ans < Q.top().val) Q.pop(), Q.push((Ans){ans, k});
int disl = INF, disr = INF;
if(ls(k)) disl = GetMinDis(ask, T[ls(k)]);
if(rs(k)) disr = GetMinDis(ask, T[rs(k)]);
if(disl < disr) {
if(disl < Q.top().val) Query(ls(k));
if(disr < Q.top().val) Query(rs(k));
}
else {
if(disr < Q.top().val) Query(rs(k));
if(disl < Q.top().val) Query(ls(k));
}
} main() {
while(scanf("%d %d", &N, &K) != EOF) {
for(int i = ; i <= N; i++)
for(int j = ; j <= K; j++)
P[i].x[j] = read();
root = Build(, N, );
int T = read();
while(T--) {
for(int i = ; i <= K; i++) ask.x[i] = read();
int M = read();
printf("the closest %d points are:\n", M);
for(int i = ; i <= M; i++) Q.push((Ans){INF, });
Query(root);
for(int i = ; i <= M; i++)
out[i] = Q.top().ID, Q.pop();
for(int i = M; i >= ; i--)
for(int j = ; j <= K; j++)
printf("%d%c", P[out[i]].x[j], j != K ? ' ' : '\n');
}
}
}
 

BZOJ 3053: The Closest M Points(K-D Tree)的更多相关文章

  1. BZOJ 3053 The Closest M Points

    [题目分析] 典型的KD-Tree例题,求k维空间中的最近点对,只需要在判断的过程中加上一个优先队列,就可以了. [代码] #include <cstdio> #include <c ...

  2. bzoj 3053: The Closest M Points【KD-tree】

    多维KDtree板子 左右儿子的估价用mn~mx当区间,假设区间里的数都存在:k维轮着做割点 #include<iostream> #include<cstdio> #incl ...

  3. 【BZOJ】3053: The Closest M Points(kdtree)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3053 本来是1a的QAQ.... 没看到有多组数据啊.....斯巴达!!!!!!!!!!!!!!!! ...

  4. 【BZOJ】【3053】The Closest M Points

    KD-Tree 题目大意:K维空间内,与给定点欧几里得距离最近的 m 个点. KD树啊……还能怎样啊……然而扩展到k维其实并没多么复杂?除了我已经脑补不出建树过程……不过代码好像变化不大>_&g ...

  5. bzoj 3053 HDU 4347 : The Closest M Points kd树

    bzoj 3053 HDU 4347 : The Closest M Points  kd树 题目大意:求k维空间内某点的前k近的点. 就是一般的kd树,根据实测发现,kd树的两种建树方式,即按照方差 ...

  6. 【BZOJ 3053】The Closest M Points

    KDTree模板,在m维空间中找最近的k个点,用的是欧几里德距离. 理解了好久,昨晚始终不明白那些“估价函数”,后来才知道分情况讨论,≤k还是=k,在当前这一维度距离过线还是不过线,过线则要继续搜索另 ...

  7. The Closest M Points BZOJ 3053

    The Closest M Points [问题描述] 软工学院的课程很讨厌!ZLC同志遇到了一个头疼的问题:在K维空间里面有许多的点,对于某些给定的点,ZLC需要找到和它最近的m个点. (这里的距离 ...

  8. 【kd-tree】bzoj3053 The Closest M Points

    同p2626.由于K比较小,所以不必用堆. #include<cstdio> #include<cstring> #include<cmath> #include& ...

  9. 【HDOJ】4347 The Closest M Points

    居然是KD解. /* 4347 */ #include <iostream> #include <sstream> #include <string> #inclu ...

随机推荐

  1. Android学习笔记(2)----LocationManager的使用

    今天使用Android的LocationManager制作了一款获取当前经纬坐标位置的软件. LocationManager获取的只是经纬坐标点,为了解析出当前经纬坐标点的实际位置,可以使用Googl ...

  2. Node服务端极速搭建 -- nvmhome

    > 本文意在让你掌握极速搭建Node服务端(任何Project) ```$ whoaminame: kelvinemail: kelvv@outlook.comhomepage: www.kel ...

  3. GDAL读取影像并插值

    影像读取 并缩放 读取大影像某一部分,并缩放到指定大小,我们有时会用如下代码: #include "gdal.h" #include "gdal_priv.h" ...

  4. Android 虚拟多开系列一——技术调研

    参考链接:http://weishu.me Github源码链接:             国内Xposed框架源码链接                               VirtualAp ...

  5. PRINCE2的优势有哪些?

    PRINCE2之所以迅速发展的原因之一是许多企业认识到建立适合自己企业的项目管理标准是一项耗时耗财的工作. 他们至少要花费6-12个月.成千上万个工时来建立一套方法,而这只是最初的成本. 之后他们必须 ...

  6. JavaScript 模块化入门

    理解模块 模块打包构建 webpack牛刀小试

  7. MyBatis基本配置和实践(一)

    第一步:创建Java工程和数据库表user 第二步:使用Maven管理项目依赖 第三步:在resources目录下加入log4j.properties 第四步:在resources目录下加入SqlMa ...

  8. d3js selections深入理解

    D3 selections选择DOM元素以便可以对这些dom元素做相应的操作,比如:更改其style,修改其属性,执行data-join操作,或者插入.删除相应elements 比如,如果给定5个ci ...

  9. Java关于List<String> 进行排序,重写Comparator()方法

    1.对list进行排序,list中的参数类型是Stirng,参数的格式不完全一样,例如有null,"","51003","510020"等 ...

  10. SVN global ignore pattern

    *.o *.lo *.la *.al .libs *.so *.so.[0-9]* *.a *.pyc *.pyo *.rej *~ #*# .#* .*.swp .DS_Store */bin */ ...