显然被留下的宝石应该贡献至少一位,否则就可以扔掉。所以如果n-k>=logw,直接输出所有数的or。现在n变得和k同阶了。于是设f[i][j]为前i个数or为j时至少选几个数,转移显然。当然可以只开一维。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 100010
#define M 120
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,m,a[N],f[<<],ans;
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj4976.in","r",stdin);
freopen("bzoj4976.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=n-read();
for (int i=;i<=n;i++) ans|=a[i]=read();
if (m>=) {cout<<ans;return ;}
memset(f,,sizeof(f));
f[]=;
for (int i=;i<=n;i++)
for (int j=;j<(<<);j++)
f[j|a[i]]=min(f[j|a[i]],f[j]+);
for (int i=(<<)-;~i;i--)
if (f[i]<=m) {cout<<i;break;}
return ;
}

BZOJ4976 宝石镶嵌(动态规划)的更多相关文章

  1. BZOJ4976: [Lydsy1708月赛]宝石镶嵌

    BZOJ4976: [Lydsy1708月赛]宝石镶嵌 https://lydsy.com/JudgeOnline/problem.php?id=4976 分析: 本来是从\(k\le 100\)这里 ...

  2. 【BZOJ4976】宝石镶嵌 DP

    [BZOJ4976]宝石镶嵌 Description 魔法师小Q拥有n个宝石,每个宝石的魔力依次为w_1,w_2,...,w_n.他想把这些宝石镶嵌到自己的法杖上,来提升法杖的威力.不幸的是,小Q的法 ...

  3. 【bzoj4976】宝石镶嵌(思维dp)

    题目传送门:bzoj4976 不得不说这是道脑洞dp,思路真的清奇. 我们可以发现,虽然n很大,但是k只有100,这里面似乎隐藏了什么玄机. 我们可以发现,设总共有$ tot $个二进制位在这n个数中 ...

  4. BZOJ4976:宝石镶嵌(DP&思维)

    Description 魔法师小Q拥有n个宝石,每个宝石的魔力依次为w_1,w_2,...,w_n.他想把这些宝石镶嵌到自己的法杖上,来提升 法杖的威力.不幸的是,小Q的法杖上宝石镶嵌栏太少了,他必须 ...

  5. 【bzoj4976】宝石镶嵌

    题解: 比较水 注意k<=100这个条件 当n-k比较大的时候 我们显然会把它有的位都给取了 不然的话我们可以考虑dp 暴力状压就可以了 代码: #include <bits/stdc++ ...

  6. 【bzoj4976】宝石镶嵌 乱搞+dp

    题目描述 从$n$个数中选出$n-k$个,使得它们的二进制或(or)最大.输出这个值. 输入 第一行包含两个正整数$n,k(2\le n\le 100000,1\le k\le 100,k<n) ...

  7. 增强学习(三)----- MDP的动态规划解法

    上一篇我们已经说到了,增强学习的目的就是求解马尔可夫决策过程(MDP)的最优策略,使其在任意初始状态下,都能获得最大的Vπ值.(本文不考虑非马尔可夫环境和不完全可观测马尔可夫决策过程(POMDP)中的 ...

  8. 简单动态规划-LeetCode198

    题目:House Robber You are a professional robber planning to rob houses along a street. Each house has ...

  9. 动态规划 Dynamic Programming

    March 26, 2013 作者:Hawstein 出处:http://hawstein.com/posts/dp-novice-to-advanced.html 声明:本文采用以下协议进行授权: ...

随机推荐

  1. CF833E Caramel Clouds

    题面 天上有$n$朵云,每朵云$i$会在时间$[l_i,r_i]$出现,你有$\text C$个糖果,你可以花费$c_i$个糖果让云$i$消失,同时需要保证你最多让两朵云消失.现在有$m$个独立的询问 ...

  2. svn 冲突处理

    C:\workspace\test>svn upConflict discovered in 'test.txt'.Select: (p) postpone, (df) diff-full, ( ...

  3. 二、Web框架实现

    一.简单web(socket) 在前一篇WEB框架概述一文中已经详细了解了:从浏览器键入一个URL到返回HTML内容的整个过程.说到底,本质上其实就是一个socket服务端,用户的浏览器其实就是一个s ...

  4. rem自适应布局

    rem自适应原理 rem是根据html的font-size大小来变化,正是基于这个出发,我们可以在每一个设备下根据设备的宽度设置对应的html字号,从而实现了自适应布局.更多介绍请看这篇文章:rem是 ...

  5. Spring Cloud(一):服务治理技术概览【Finchley 版】

    Spring Cloud(一):服务治理技术概览[Finchley 版]  发表于 2018-04-14 |  更新于 2018-05-07 |  Spring Cloud Netflix 是 Spr ...

  6. redis 为什么快

    redis采用自己实现的事件分离器,效率比较高,内部采用非阻塞的执行方式,吞吐能力比较大. 不过,因为一般的内存操作都是简单存取操作,线程占用时间相对较短,主要问题在io上,因此,redis这种模型是 ...

  7. 238. [LeetCode] Product of Array Except Self

    Given an array nums of n integers where n > 1,  return an array output such that output[i] is equ ...

  8. C++进阶训练——停车收费系统设计

    一.简介 经过一段时间的c++基础学习,是时候做一个较为全面的.运用c++功能的较复杂的项目练练手了. 运用软件:Visual Studio   (VS). 题目:c++停车收费系统设计(某本编程书进 ...

  9. PayPal接洽苹果 欲承接手机支付外包

    不久前,<华尔街日报>等媒体报道,苹果正计划利用iTunes内部支付功能,推出第三方手机支付服务.美国科技 新闻网站Recode1月30日引述消息人士称,移动支付领军厂商PayPal,目前 ...

  10. 2018-2019-20172321 《Java软件结构与数据结构》第四周学习总结

    2018-2019-20172321 <Java软件结构与数据结构>第四周学习总结 教材学习内容总结 第六章 6.1列表集合 列表集合是一种概念性表示法,其思想是使事物以线性列表的方式进行 ...