显然被留下的宝石应该贡献至少一位,否则就可以扔掉。所以如果n-k>=logw,直接输出所有数的or。现在n变得和k同阶了。于是设f[i][j]为前i个数or为j时至少选几个数,转移显然。当然可以只开一维。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 100010
#define M 120
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,m,a[N],f[<<],ans;
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj4976.in","r",stdin);
freopen("bzoj4976.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=n-read();
for (int i=;i<=n;i++) ans|=a[i]=read();
if (m>=) {cout<<ans;return ;}
memset(f,,sizeof(f));
f[]=;
for (int i=;i<=n;i++)
for (int j=;j<(<<);j++)
f[j|a[i]]=min(f[j|a[i]],f[j]+);
for (int i=(<<)-;~i;i--)
if (f[i]<=m) {cout<<i;break;}
return ;
}

BZOJ4976 宝石镶嵌(动态规划)的更多相关文章

  1. BZOJ4976: [Lydsy1708月赛]宝石镶嵌

    BZOJ4976: [Lydsy1708月赛]宝石镶嵌 https://lydsy.com/JudgeOnline/problem.php?id=4976 分析: 本来是从\(k\le 100\)这里 ...

  2. 【BZOJ4976】宝石镶嵌 DP

    [BZOJ4976]宝石镶嵌 Description 魔法师小Q拥有n个宝石,每个宝石的魔力依次为w_1,w_2,...,w_n.他想把这些宝石镶嵌到自己的法杖上,来提升法杖的威力.不幸的是,小Q的法 ...

  3. 【bzoj4976】宝石镶嵌(思维dp)

    题目传送门:bzoj4976 不得不说这是道脑洞dp,思路真的清奇. 我们可以发现,虽然n很大,但是k只有100,这里面似乎隐藏了什么玄机. 我们可以发现,设总共有$ tot $个二进制位在这n个数中 ...

  4. BZOJ4976:宝石镶嵌(DP&思维)

    Description 魔法师小Q拥有n个宝石,每个宝石的魔力依次为w_1,w_2,...,w_n.他想把这些宝石镶嵌到自己的法杖上,来提升 法杖的威力.不幸的是,小Q的法杖上宝石镶嵌栏太少了,他必须 ...

  5. 【bzoj4976】宝石镶嵌

    题解: 比较水 注意k<=100这个条件 当n-k比较大的时候 我们显然会把它有的位都给取了 不然的话我们可以考虑dp 暴力状压就可以了 代码: #include <bits/stdc++ ...

  6. 【bzoj4976】宝石镶嵌 乱搞+dp

    题目描述 从$n$个数中选出$n-k$个,使得它们的二进制或(or)最大.输出这个值. 输入 第一行包含两个正整数$n,k(2\le n\le 100000,1\le k\le 100,k<n) ...

  7. 增强学习(三)----- MDP的动态规划解法

    上一篇我们已经说到了,增强学习的目的就是求解马尔可夫决策过程(MDP)的最优策略,使其在任意初始状态下,都能获得最大的Vπ值.(本文不考虑非马尔可夫环境和不完全可观测马尔可夫决策过程(POMDP)中的 ...

  8. 简单动态规划-LeetCode198

    题目:House Robber You are a professional robber planning to rob houses along a street. Each house has ...

  9. 动态规划 Dynamic Programming

    March 26, 2013 作者:Hawstein 出处:http://hawstein.com/posts/dp-novice-to-advanced.html 声明:本文采用以下协议进行授权: ...

随机推荐

  1. 电脑开机svchost.exe报错

    一.问题: 这几天电脑开机一直弹出一个对话框说:svchost.exe文件不能运行,百度后发现是用于动态运行库的依赖(dll),不过不知道是个啥东西 二.解决: 开机弹框虽然不影响电脑的使用,但是看着 ...

  2. 16、Java并发编程:Timer和TimerTask

    Java并发编程:Timer和TimerTask(转载) 下面内容转载自: http://blog.csdn.net/xieyuooo/article/details/8607220 其实就Timer ...

  3. shell 参数

    转:http://hi.baidu.com/ipvsadm/item/489d9e16460195ddbe9042ee linux中shell变量$#,$@,$0,$1,$2的含义解释 linux中s ...

  4. C#Framework4.0支持异步async/await语法

    由于用户使用的是XP系统,但是程序里异步都是通过async/await代码来实现的,然而async/await需要Framework4.5版本才可以,而XP系统最高只能支持到Framework4.0, ...

  5. 抓包工具Charles学习总结

    最近由于工作需要对App进行测试,功能方面还好说,但是在网络测试方面遇到了一些问题.由于公司App是使用https进行通信,直接在路由器上抓包下来,数据包都是加密的,没法看到接口返回的内容,给测试的B ...

  6. Siki_Unity_3-8_Lua编程(未完)

    Unity 3-8 Lua编程 任务1&2&3:前言 课程内容: Lua从入门到掌握 为之后的xLua和其他热更新方案打下基础 任务4:Lua简介 Lua是轻量小巧的脚本语言--无需编 ...

  7. K-means + PCA + T-SNE 实现高维数据的聚类与可视化

    使用matlab完成高维数据的聚类与可视化 [idx,Centers]=kmeans(qy,) [COEFF,SCORE,latent] = pca(qy); SCORE = SCORE(:,:); ...

  8. P4语法(3)Table,Action

    Table table是p4的匹配——动作表,定义了匹配字段(key).动作(action)和一些其他相关属性. 其处理数据包的流程: Key construction.建立其匹配字段 Key loo ...

  9. Alpha冲刺总结报告

    一.项目预期计划 允许粗糙的美工设计.由于是毫无经验的人生第一次,必定在开发过程中会遇到许多的问题,因而我们必定会花费不少时间在学习和debug上. 实现除了他山之石和规则系统以外的所有内容. 在日历 ...

  10. Alpha-8

    前言 失心疯病源8 团队代码管理github 站立会议 队名:PMS 530雨勤(组长) 今天完成了那些任务 20:00~23:00 代码整合,已形成可用模块,但还需适应场景局部优化 代码签入gith ...