第一问求最小割。 第二问求割边最小的最小割。

我们直接求出第二问就可以求出第一问了。

对于求割边最小,如果我们可以把每条边都附加一个1的权值,那么求最小割是不是会优先选择1最少的边呢。

但是如果直接把边的权值+1,这样求得的最小割就不是原来的最小割了,那是因为1会对原来的容量产生影响。

如果把每条边的权值都乘以一个很大的常数,再加上附加权值1,这样求出的最小割是不是显然也是原图的最小割呢。

那么最终的答案除以这个常数就是最小割的容量,最终的答案模这个常数就是最小割的最小割边数。

# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi acos(-1.0)
# define eps 1e-
# define MOD
# define INF 1e16
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<,l,mid
# define rch p<<|,mid+,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
int Scan() {
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
void Out(int a) {
if(a<) {putchar('-'); a=-a;}
if(a>=) Out(a/);
putchar(a%+'');
}
const int N=;
//Code begin... struct Edge{int p, next; LL w;}edge[];
int head[N], cnt=, s, t, vis[N];
queue<int>Q; void add_edge(int u, int v, LL w){
edge[cnt].p=v; edge[cnt].w=w; edge[cnt].next=head[u]; head[u]=cnt++;
edge[cnt].p=u; edge[cnt].w=; edge[cnt].next=head[v]; head[v]=cnt++;
}
int bfs(){
int i, v;
mem(vis,-);
vis[s]=; Q.push(s);
while (!Q.empty()) {
v=Q.front(); Q.pop();
for (i=head[v]; i; i=edge[i].next) {
if (edge[i].w> && vis[edge[i].p]==-) {
vis[edge[i].p]=vis[v] + ;
Q.push(edge[i].p);
}
}
}
return vis[t]!=-;
}
LL dfs(int x, LL low){
int i;
LL a, temp=low;
if (x==t) return low;
for (i=head[x]; i; i=edge[i].next) {
if (edge[i].w> && vis[edge[i].p]==vis[x]+){
a=dfs(edge[i].p,min(edge[i].w,temp));
temp-=a; edge[i].w-=a; edge[i^].w += a;
if (temp==) break;
}
}
if (temp==low) vis[x]=-;
return low-temp;
}
int main ()
{
int n, m, u, v, w;
LL P=;
scanf("%d%d",&n,&m); s=; t=n;
FOR(i,,m) scanf("%d%d%d",&u,&v,&w), add_edge(u,v,(LL)w*P+);
LL sum=;
while (bfs()) sum+=dfs(s,INF);
printf("%lld %lld\n",sum/P,sum%P);
return ;
}

luogu 1344 追查坏牛奶(最小割)的更多相关文章

  1. Luogu1344 追查坏牛奶 最小割

    题目传送门 题意:给出$N$个节点$M$条边的有向图,边权为$w$,求其最小割与达到最小割的情况下割掉边数的最小值.$N \leq 32,M \leq 1000,w\leq 2 \times 10^6 ...

  2. BZOJ 3894 Luogu P4313 文理分科 (最小割)

    题目链接: (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=3894 (luogu) https://www.luogu.org/pro ...

  3. Luogu P3227 [HNOI2013]切糕 最小割

    首先推荐一个写的很好的题解,个人水平有限只能写流水账,还请见谅. 经典的最小割模型,很多人都说这个题是水题,但我还是被卡了=_= 技巧:加边表示限制 在没有距离\(<=d\)的限制时候,我们对每 ...

  4. 【Luogu1344】追查坏牛奶(最小割)

    [Luogu1344]追查坏牛奶(最小割) 题面 洛谷 题解 裸的最小割,但是要求边的数量最小. 怎么办呢?给每条边的权值额外加上一个很大的值就了. #include<iostream> ...

  5. USACO 4.4.2 追查坏牛奶 oj1341 网络流最小割问题

    描述 Description 你第一天接手三鹿牛奶公司就发生了一件倒霉的事情:公司不小心发送了一批有三聚氰胺的牛奶.很不幸,你发现这件事的时候,有三聚氰胺的牛奶已经进入了送货网.这个送货网很大,而且关 ...

  6. 洛谷 P1344 追查坏牛奶Pollutant Control —— 最小割

    题目:https://www.luogu.org/problemnew/show/P1344 就是求最小割: 但是还要边数最小,所以把边权都*1001+1,这样原来流量部分是*1001,最大流一样的不 ...

  7. [USACO Section 4.4]追查坏牛奶Pollutant Control (最小割)

    题目链接 Solution 一眼看过去就是最小割,但是要求割边最少的最小的割. 所以要用骚操作... 建边的时候每条边权 \(w = w * (E+1) + 1;\) 那么这样建图跑出来的 \(max ...

  8. BZOJ 2039 / Luogu P1791 [2009国家集训队]employ人员雇佣 (最小割)

    题面 BZOJ传送门 Luogu传送门 分析 考虑如何最小割建图,因为这仍然是二元关系,我们可以通过解方程来确定怎么建图,具体参考论文 <<浅析一类最小割问题 湖南师大附中 彭天翼> ...

  9. BZOJ 2127 / Luogu P1646 [国家集训队]happiness (最小割)

    题面 BZOJ传送门 Luogu传送门 分析 这道题又出现了二元关系,于是我们只需要解方程确定怎么连边就行了 假设跟SSS分在一块是选文科,跟TTT分在一块是选理科,先加上所有的收益,再来考虑如何让需 ...

随机推荐

  1. 20145226夏艺华 《Java程序设计》实验报告五

    实验五 Java网络编程及安全 实验内容 运行下载的TCP代码,结对进行 利用加解密代码包,编译运行代码,结对进行 集成代码,加密后通过TCP发送 结对伙伴:20145203 马超 实验步骤 (一)中 ...

  2. CF833E Caramel Clouds

    题面 天上有$n$朵云,每朵云$i$会在时间$[l_i,r_i]$出现,你有$\text C$个糖果,你可以花费$c_i$个糖果让云$i$消失,同时需要保证你最多让两朵云消失.现在有$m$个独立的询问 ...

  3. VS2010 不显示 最近使用的项目 解决办法

    昨天重装了VS2010,然后开了项目看了下今天早上再打开发现起始页近使用项目列表是空白的,每次打开项目都要去到指定目录去找解决方案才能打开,感觉很麻烦,在网上找了下解决方案,解决步骤下:菜单 —— 运 ...

  4. 不会Python开发的运维终将被淘汰?

    Python语言是一种面向对象.直译式计算机程序设计语言,由Guido van Rossum于1989年底发明.Python语法简捷而清晰,具有丰富和强大的类库,具有可扩展性和可嵌入性,是现代比较流行 ...

  5. python-编程从入门到实践

    python-编程从入门到实践 1.python文件后缀名: .py 是Python的源码文件,由Python.exe解释. .pyc 是Python的编译文件.pyc 文件往往代替 py 文件发布: ...

  6. [Ubuntu] <uptime>命令

    uptime 命令 就是查看系统启动时间的,前几个大家应该都很熟悉:当前时间.系统启动时间.正在登陆的用户数 最后的三个数字,分别代表过去 1分钟  5分钟  15分钟  的平均负载(Load Ave ...

  7. MongoDB 极简实践入门

    原作者StevenSLXie; 原链接(https://github.com/StevenSLXie/Tutorials-for-Web-Developers/blob/master/MongoDB% ...

  8. Hbase 教程-安装

    HBase安装 安装前设置 安装Hadoop在Linux环境下之前,需要建立和使用Linux SSH(安全Shell).按照下面设立Linux环境提供的步骤. 创建一个用户 首先,建议从Unix创建一 ...

  9. PHPCMS V9 的手机门户wap绑定单页面

    当前的Phpcms V9手机网站的设置还有点弱,绑定的栏目不能设置选择模板,而且不能绑定单页面page.不过可以自定义做到绑定单页面page这一个功能:1.修改phpcms\modules\wap\i ...

  10. Zabbix自动发现之fping

    原文发表于cu:2016-06-21 Zabbix自动发现功能从配置流程上比较简单:Discovery与Action. 在做Zabbix的自动发现验证时,使用"ICMP ping" ...