bzoj1007-水平可见直线
题目
在平面直角坐标系上以\(y=kx+b\)的形式给出\(n (n\le 50000)\)条直线,求从无限高的地方能看到多少条直线。
分析
举几个例子发现我们要求的直线组成一个下凸的形状。所以我们只要找出直线围成的下凸包即可。
对直线排序,\(k\)从小到大,\(b\)从大到小,用一个栈维护一下。如果当前元素与栈顶元素的交点在栈顶元素与栈中第二个元素的交点的左边,那么弹出栈顶(模拟一下就知道了)。
代码
计算几何尽量避免除法,因为会有精度问题,一般移项转化成乘法计算。
#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn=5e4+10;
struct line {
double k,b;
int id;
bool operator < (const line a) const {
return k==a.k?b>a.b:k<a.k;
}
} a[maxn],sta[maxn];
int top=0;
bool bid(line a,line b) {
return a.id<b.id;
}
bool ans[maxn];
int main() {
#ifndef ONLINE_JUDGE
freopen("test.in","r",stdin);
#endif
int n;
scanf("%d",&n);
for (int i=1;i<=n;++i) scanf("%lf%lf",&a[i].k,&a[i].b),a[i].id=i;
sort(a+1,a+n+1);
for (int i=1;i<=n;++i) {
while (top>1) if ((a[i].b-sta[top].b)*(sta[top-1].k-sta[top].k)<=(sta[top].b-sta[top-1].b)*(sta[top].k-a[i].k)) --top; else break;
sta[++top]=a[i];
}
for (int i=1;i<=top;++i) ans[sta[i].id]=true;
for (int i=1;i<maxn;++i) if (ans[i]) printf("%d ",i);
puts("");
}
bzoj1007-水平可见直线的更多相关文章
- BZOJ1007 水平相交直线
按照斜率排序,我们可以想象如果你能看到大于等于三条直线那么他一定会组成一个下凸包,这样我们只需要判断如果当前这条直线与栈顶第二直线相交点相比于栈顶第二直线与栈顶直线相交点靠左那么他就不满足凸包性质. ...
- 【BZOJ1007】水平可见直线(单调栈)
[BZOJ1007]水平可见直线(单调栈) 题解 Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为 可见的 ...
- 【BZOJ1007】[HNOI2008]水平可见直线 半平面交
[BZOJ1007][HNOI2008]水平可见直线 Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见 ...
- [bzoj1007][HNOI2008]水平可见直线_单调栈
水平可见直线 bzoj-1007 HNOI-2008 题目大意:给你n条直线,为你从上往下看能看见多少跳直线. 注释:能看见一条直线,当且仅当这条直线上存在一条长度>0的线段使得这条线段上方没有 ...
- 【BZOJ1007】【HNOI2008】水平可见直线(斜率排序+单调栈)
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 2605 Solved: 914[Submit][Stat ...
- 【bzoj1007】[HNOI2008]水平可见直线
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 5932 Solved: 2254[Submit][Sta ...
- 水平可见直线 bzoj 1007
水平可见直线 (1s 128M) lines [问题描述] 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆 ...
- 【BZOJ 1007】 [HNOI2008]水平可见直线
Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的. 例如,对于直线: ...
- BZOJ_1007_ [HNOI2008]_水平可见直线_(单调栈+凸包)
描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1007 给出一些直线,沿着y轴从上往下看,能看到多少条直线. 分析 由于直线相交,会遮挡住一些直 ...
- bzoj 1007 [HNOI2008]水平可见直线(单调栈)
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 5120 Solved: 1899[Submit][Sta ...
随机推荐
- 【原创】Odoo开发文档学习之:ORM API接口(ORM API)(边Google翻译边学习)
官方ORM API开发文档:https://www.odoo.com/documentation/10.0/reference/orm.html Recordsets(记录集) New in vers ...
- 浅入tcp
1.认识TCP tcp协议是传输层协议,它的最主要的3个特点是面向连接.可靠保证.基于字节流.当应用层把数据给tcp层时,注意如果数据大于MSS是要在tcp层进行分段的.tcp协议为了保证不丢包会给每 ...
- PyQt5 结合 matplotlib 时,如何显示其 NavigationToolbar
本文目的:展示 PyQt5 结合 matplotlib 时,如何显示其 NavigationToolbar. 本人搜遍所有网络无果,没办法,查看PyQt5源代码,最终才搞明白...特此留记. 〇.Py ...
- GlusterFS学习之路(三)客户端挂载和管理GlusterFS卷
一.客户端挂载 可以使用Gluster Native Client方法在GNU / Linux客户端中实现高并发性,性能和透明故障转移.可以使用NFS v3访问gluster卷.已经对GNU / Li ...
- SaltStack入门篇(五)之salt-ssh的使用以及LAMP状态设计部署
1.salt-ssh的使用 官方文档:https://docs.saltstack.com/en/2016.11/topics/ssh/index.html ()安装salt-ssh [root@li ...
- Jenkins CLI 通过ssh方式链接时的证书
在Jenkins自己的配置文档下,并没有详细说明要如何生成ssh证书,不过随便网上查一查就会有很多. 这里记录一个坑: 这个ssh必须要用ssh2!!! 这个ssh必须要用ssh2!!! 这个ssh必 ...
- Windows隐藏账户
win7系统用户由于共享文件,会开启Guest来宾帐户,开启Guest来宾帐户后发现登录界面会显示guest帐户,但是只有在有密码的情况下才会显示,很多用户不喜欢显示guest帐户,那么Win7登录界 ...
- Jmeter接口测试(四)传递参数
参数设置 Jmeter 支持通过 查询字符串参数(Query String Parameters) 或者 Request body 请求体来传递参数. 1.get请求是普通键值对 get请求一般通过p ...
- https双向认证网站搭建
新建网站 在搭建网站证书之前,我们先搭建好我们的网站 1.网站基本搭建 为我们的项目新建一个网站,按照如下的步骤来 1,打开IIS,右键单击网站弹出菜单,选择网站(如图1.1.1) 图1.1.1 2, ...
- [C++]boost dijkstra获得两点间的最短路
需求是只需要得到两点间的最短路,不需要求得单源对于全图的最短路,使用boost中的dijsktra_shortest_path,当得到目标点的最短路时直接throw exception. #inclu ...