bzoj1007-水平可见直线
题目
在平面直角坐标系上以\(y=kx+b\)的形式给出\(n (n\le 50000)\)条直线,求从无限高的地方能看到多少条直线。
分析
举几个例子发现我们要求的直线组成一个下凸的形状。所以我们只要找出直线围成的下凸包即可。
对直线排序,\(k\)从小到大,\(b\)从大到小,用一个栈维护一下。如果当前元素与栈顶元素的交点在栈顶元素与栈中第二个元素的交点的左边,那么弹出栈顶(模拟一下就知道了)。
代码
计算几何尽量避免除法,因为会有精度问题,一般移项转化成乘法计算。
#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn=5e4+10;
struct line {
double k,b;
int id;
bool operator < (const line a) const {
return k==a.k?b>a.b:k<a.k;
}
} a[maxn],sta[maxn];
int top=0;
bool bid(line a,line b) {
return a.id<b.id;
}
bool ans[maxn];
int main() {
#ifndef ONLINE_JUDGE
freopen("test.in","r",stdin);
#endif
int n;
scanf("%d",&n);
for (int i=1;i<=n;++i) scanf("%lf%lf",&a[i].k,&a[i].b),a[i].id=i;
sort(a+1,a+n+1);
for (int i=1;i<=n;++i) {
while (top>1) if ((a[i].b-sta[top].b)*(sta[top-1].k-sta[top].k)<=(sta[top].b-sta[top-1].b)*(sta[top].k-a[i].k)) --top; else break;
sta[++top]=a[i];
}
for (int i=1;i<=top;++i) ans[sta[i].id]=true;
for (int i=1;i<maxn;++i) if (ans[i]) printf("%d ",i);
puts("");
}
bzoj1007-水平可见直线的更多相关文章
- BZOJ1007 水平相交直线
按照斜率排序,我们可以想象如果你能看到大于等于三条直线那么他一定会组成一个下凸包,这样我们只需要判断如果当前这条直线与栈顶第二直线相交点相比于栈顶第二直线与栈顶直线相交点靠左那么他就不满足凸包性质. ...
- 【BZOJ1007】水平可见直线(单调栈)
[BZOJ1007]水平可见直线(单调栈) 题解 Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为 可见的 ...
- 【BZOJ1007】[HNOI2008]水平可见直线 半平面交
[BZOJ1007][HNOI2008]水平可见直线 Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见 ...
- [bzoj1007][HNOI2008]水平可见直线_单调栈
水平可见直线 bzoj-1007 HNOI-2008 题目大意:给你n条直线,为你从上往下看能看见多少跳直线. 注释:能看见一条直线,当且仅当这条直线上存在一条长度>0的线段使得这条线段上方没有 ...
- 【BZOJ1007】【HNOI2008】水平可见直线(斜率排序+单调栈)
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 2605 Solved: 914[Submit][Stat ...
- 【bzoj1007】[HNOI2008]水平可见直线
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 5932 Solved: 2254[Submit][Sta ...
- 水平可见直线 bzoj 1007
水平可见直线 (1s 128M) lines [问题描述] 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆 ...
- 【BZOJ 1007】 [HNOI2008]水平可见直线
Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的. 例如,对于直线: ...
- BZOJ_1007_ [HNOI2008]_水平可见直线_(单调栈+凸包)
描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1007 给出一些直线,沿着y轴从上往下看,能看到多少条直线. 分析 由于直线相交,会遮挡住一些直 ...
- bzoj 1007 [HNOI2008]水平可见直线(单调栈)
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 5120 Solved: 1899[Submit][Sta ...
随机推荐
- 20155336 实验三 敏捷开发与XP实践
20155336 实验三 敏捷开发与XP实践 实验内容 XP基础 XP核心实践 相关工具 实验内容及步骤 (一)编码标准:在IDEA中使用工具(Code->Reformate Code)把代码重 ...
- ARKit-1
1.1-AR技术简介 增强现实技术(Augmented Reality,简称 AR),是一种实时地计算摄影机影像的位置及角度并加上相应图像.视频.3D模型的技术,这种技术的目标是在屏幕上把虚拟世界套在 ...
- Dlib库中实现正脸人脸检测的测试代码
Dlib库中提供了正脸人脸检测的接口,这里参考dlib/examples/face_detection_ex.cpp中的代码,通过调用Dlib中的接口,实现正脸人脸检测的测试代码,测试代码如下: #i ...
- MySQL 安装 + Windows7
Window版本 1.下载 http://dev.mysql.com/downloads/mysql/ 2.解压 如果想要让MySQL安装在指定目录,那么就将解压后的文件夹移动到指定目录,如:D:\m ...
- Zabbix学习之路(二)之添加主机监控及自定义item监控
1.zabbix_get命令详解 安装zabbix-get命令 [root@linux-node1 ~]# yum install -y zabbix_get 参数说明: -s --host: 指定客 ...
- Objective-C 方法交换实践(二) - 方法指针交换
一. 基本函数 根据 sel 得到 class 的实例方法 Method class_getInstanceMethod(Class cls, SEL name) 根据 sel 得到 class 的函 ...
- 安装centos minimal 版本后的网络配置(linux)
1.修改网卡配置文件 2.重启网络服务 3.测试网络
- centos7下python3与python2共存并且开启py3虚拟环境
因为下载视频需要用到python3环境,今天在我的win上安装下载工具死活安装不上去,在大盘鸡上一下就安装成功了...可能在win上不兼容吧...无奈只能在大盘鸡上进行折腾了,顺便几个笔记 由于大盘鸡 ...
- 第六章P2P技术及应用
第六章P2P技术及应用 P2P技术在我们日常生活中非常实用,例如我们常用的QQ.PPLive.BitTorrent就是基于P2P技术研发.下面将本章中的重点内容进行归纳. 文章中的Why表示产生的背景 ...
- and_or_not 逻辑运算符的操作注解!
python操作: