Bootstrap又称自展法,是用小样本估计总体值的一种非参数方法,在进化和生态学研究中应用十分广泛。例如进化树分化节点的自展支持率等。

Bootstrap的思想,是生成一系列bootstrap伪样本,每个样本是初始数据有放回抽样。通过对伪样本的计算,获得统计量的分布。例如,要进行1000次bootstrap,求平均值的置信区间,可以对每个伪样本计算平均值。这样就获得了1000个平均值。对着1000个平均值的分位数进行计算, 即可获得置信区间。已经证明,在初始样本足够大的情况下,bootstrap抽样能够无偏得接近总体的分布。

下面是一个实例:

例如,假设有一批产品,随机抽出30个,使用寿命(天数)如下,试用bootstrap的方法估计这批产品寿命95%的置信区间。

dat <- c(119,120,131,209,210,337,332,287,146,1
       29,232,169,208,253,142,105,419,179,
         324,287,115,132,308,356,286,221,204,
         105,45,245)

图1 初始数据的频数直方图

### 查看原始数据的频数直方图

hist(dat, col = "gray")

#生成一个存储器

boot.sample <- list()

## 循环1000次,有放回的抽样,每次生成的

## 新样本存储在boot.sample中

for(in 1:1000){

boot.sample[[i]] <- sample(dat,size = 30, replace = TRUE)

}

## 求每个样本的mean,结果为1000个bootstrap样本的mean

boot.mean <- unlist(lapply(boot.sample, mean))

## 频数直方图

hist(boot.mean, col = "gray")

## 求95%的置信区间

CI95 <- quantile(boot.mean, probs = c(0.025, 0.975))

## 在频数直方图上加置信区间

abline(= CI95, col = "red")

 
图2  Bootstrap 1000个伪样本平均值的频数直方图
 
原文地址:http://blog.sciencenet.cn/home.PHP?mod=space&uid=255662&do=blog&id=523462
作者:张金龙

Bootstrap抽样(自展法)的更多相关文章

  1. Bootstrap Method

    bootstrap方法是一种重采样技术,用于通过抽样数据集来估计总体统计数据.是一种面向应用的.基于大量计算的统计思维——模拟抽样统计推断. 它可以用来估计统计数据,例如平均值或标准差.在应用机器学习 ...

  2. 机器学习--集成学习(Ensemble Learning)

    一.集成学习法 在机器学习的有监督学习算法中,我们的目标是学习出一个稳定的且在各个方面表现都较好的模型,但实际情况往往不这么理想,有时我们只能得到多个有偏好的模型(弱监督模型,在某些方面表现的比较好) ...

  3. sklearn_随机森林random forest原理_乳腺癌分类器建模(推荐AAA)

     sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...

  4. Python机器学习笔记——随机森林算法

    随机森林算法的理论知识 随机森林是一种有监督学习算法,是以决策树为基学习器的集成学习算法.随机森林非常简单,易于实现,计算开销也很小,但是它在分类和回归上表现出非常惊人的性能,因此,随机森林被誉为“代 ...

  5. 基于FPGA的16阶级联型iir带通滤波器实现

    警告 此文章将耗费你成吨的流量,请wifi下阅读,造成的流量浪费本人不承担任何责任.初版源代码获取(请勿用作他用,仅供学习):https://gitee.com/kingstacker/iir.git ...

  6. Oracle SQL性能优化技巧大总结

    http://wenku.baidu.com/link?url=liS0_3fAyX2uXF5MAEQxMOj3YIY4UCcQM4gPfPzHfFcHBXuJTE8rANrwu6GXwdzbmvdV ...

  7. 教你用Python解决非平衡数据问题(附代码)

    本文为你分享数据挖掘中常见的非平衡数据的处理,内容涉及到非平衡数据的解决方案和原理,以及如何使用Python这个强大的工具实现平衡的转换. 后台回复“不平衡”获取数据及代码~ 前言 好久没有更新自己写 ...

  8. 随机森林入门攻略(内含R、Python代码)

    随机森林入门攻略(内含R.Python代码) 简介 近年来,随机森林模型在界内的关注度与受欢迎程度有着显著的提升,这多半归功于它可以快速地被应用到几乎任何的数据科学问题中去,从而使人们能够高效快捷地获 ...

  9. RF是如何工作的?

    随机森林的发展史 谈及随机森林算法的产生与发展,我们必须回溯到20世纪80年代.可以说,该算法是Leo Breiman, Adele Cutler, Ho Tin Kam, Dietterich, A ...

随机推荐

  1. ScrollView拉到尽头时出现阴影的解决方法

    <code class="hljs markdown has-numbering" style="display: block; padding: 0px; col ...

  2. FTP新建文件夹访问

    今天在远程服务器上添加了文件夹,本来还想着FTP打开看看,结果竟然发现没有这个文件夹访问 想了一下,感觉应该是FTP访问的文件设置,只有FTP设置了的文件夹才能有显示

  3. fedora/centos7防火墙FirewallD详解

    1 使用 FirewallD 构建动态防火墙 1.1 “守护进程” 1.2 静态防火墙(system-config-firewall/lokkit) 1.3 使用 iptables 和 ip6tabl ...

  4. JS:“分享到”之类的悬浮框的运动原理(代码)

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  5. Sql Server 关于SET IDENTITY_INSERT的问题

    想要将值插入到自动编号(或者说是标识列,IDENTITY)中去,需要设定 SET IDENTITY_INSERT 示例: 1.首先建立一个有标识列的表: CREATE TABLE products ( ...

  6. 微信小程序 --- 完成小程序支付功能

    最近开发小程序,一直在看小程序的支付.经过一天的努力,小程序支付功能最终实现了. 下面感谢 csdn 博主:千堆雪惹尘埃 发布的 " 小程序与php 实现微信支付 " 原文地址: ...

  7. jsp实现文件下载的代码(转载)

    Java代码   OutputStream out=response.getOutputStream(); byte by[]=new byte[500]; File fileLoad=new Fil ...

  8. 系统性能优化- Session丢失

    最近在做项目的过程中,客户经常反馈在操作的时候进场会突然跳转到登录页面. 先描述下系统情况: 操作系统:WindowsServer 2008 .NET版本:.NET 4.0/ASP.NET 4.0/A ...

  9. oracle通过profile限制用户的恶意登录和使用期限

    用户profile口令管理 1,可以把profile想象成一个数据对象(文件,规则) 案例: 允许某用户,最多尝试登录3次,如3次未登录成功,则锁定该用户,锁定后两天不能登录系统 设置语法(syste ...

  10. poj1584 A round peg in a ground hole【计算几何】

    含[判断凸包],[判断点在多边形内],[判断圆在多边形内]模板  凸包:即凸多边形 用不严谨的话来讲,给定二维平面上的点集,凸包就是将最外层的点连接起来构成的凸多边形,它能包含点集中所有的点. The ...