spark-streaming与flume整合  push

package cn.my.sparkStream

import org.apache.spark.SparkConf
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming._
import org.apache.spark.streaming.flume._ /** */
object SparkFlumePush {
def main(args: Array[String]) {
if (args.length < ) {
System.err.println(
"Usage: FlumeEventCount <host> <port>")
System.exit()
}
LogLevel.setStreamingLogLevels()
val Array(host, port) = args
val batchInterval = Milliseconds()
// Create the context and set the batch size
val sparkConf = new SparkConf().setAppName("FlumeEventCount").setMaster("local[2]")
val ssc = new StreamingContext(sparkConf, batchInterval)
// Create a flume stream
val stream = FlumeUtils.createStream(ssc, host, port.toInt, StorageLevel.MEMORY_ONLY_SER_2)
// Print out the count of events received from this server in each batch
stream.count().map(cnt => "Received " + cnt + " flume events.").print()
//拿到消息中的event,从event中拿出body,body是真正的消息体
stream.flatMap(t=>{new String(t.event.getBody.array()).split(" ")}).map((_,)).reduceByKey(_+_).print ssc.start()
ssc.awaitTermination()
}
}

package cn.my.sparkStream

import java.net.InetSocketAddress

import org.apache.spark.SparkConf
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming._
import org.apache.spark.streaming.flume._ /**
*
*/
object SparkFlumePull {
def main(args: Array[String]) {
if (args.length < 2) {
System.err.println(
"Usage: FlumeEventCount <host> <port>")
System.exit(1)
}
LogLevel.setStreamingLogLevels()
val Array(host, port) = args
val batchInterval = Milliseconds(2000)
// Create the context and set the batch size
val sparkConf = new SparkConf().setAppName("FlumeEventCount").setMaster("local[2]")
val ssc = new StreamingContext(sparkConf, batchInterval)
// Create a flume stream //val stream = FlumeUtils.createStream(ssc, host, port.toInt, StorageLevel.MEMORY_ONLY_SER_2)
// val flumeStream = FlumeUtils.createPollingStream(ssc, host, port.toInt)
/*
def createPollingStream(
jssc: JavaStreamingContext,
addresses: Array[InetSocketAddress],
storageLevel: StorageLevel
):
*/
//当sink有多个的时候
val flumesinklist = Array[InetSocketAddress](new InetSocketAddress("mini1", 8888))
val flumeStream = FlumeUtils.createPollingStream(ssc, flumesinklist, StorageLevel.MEMORY_ONLY_2) flumeStream.count().map(cnt => "Received " + cnt + " flume events.").print()
flumeStream.flatMap(t => {
new String(t.event.getBody.array()).split(" ")
}).map((_, 1)).reduceByKey(_ + _).print() // Print out the count of events received from this server in each batch
//stream.count().map(cnt => "Received " + cnt + " flume events.").print()
//拿到消息中的event,从event中拿出body,body是真正的消息体
//stream.flatMap(t=>{new String(t.event.getBody.array()).split(" ")}).map((_,1)).reduceByKey(_+_).print ssc.start()
ssc.awaitTermination()
}
}
 

http://spark.apache.org/docs/1.6.3/streaming-flume-integration.html

spark与flume整合的更多相关文章

  1. Spark Streaming + Flume整合官网文档阅读及运行示例

    1,基于Flume的Push模式(Flume-style Push-based Approach)      Flume被用于在Flume agents之间推送数据.在这种方式下,Spark Stre ...

  2. Flume整合Spark Streaming

    Spark版本1.5.2,Flume版本:1.6 Flume agent配置文件:spool-8.51.conf agent.sources = source1 agent.channels = me ...

  3. <Spark Streaming><Flume><Integration>

    Overview Flume:一个分布式的,可靠的,可用的服务,用于有效地收集.聚合.移动大规模日志数据 我们搭建一个flume + Spark Streaming的平台来从Flume获取数据,并处理 ...

  4. spark第十篇:Spark与Kafka整合

    spark与kafka整合需要引入spark-streaming-kafka.jar,该jar根据kafka版本有2个分支,分别是spark-streaming-kafka-0-8和spark-str ...

  5. flume 整合 kafka

    flume 整合 kafka:   flume:高可用的,高可靠的,分布式的海量日志采集.聚合和传输的系统. kafka:分布式的流数据平台.   flume 采集业务日志,发送到kafka   一. ...

  6. IDEA Spark Streaming Flume数据源 --解决无法转化为实际输入数据,及中文乱码(Scala)

    需要三步: 1.shell:往 1234 端口写数据 nc localhost 1234 2.shell: 启动flume服务 cd /usr/local2/flume/bin ./flume-ng ...

  7. Spark Streaming + Kafka整合(Kafka broker版本0.8.2.1+)

    这篇博客是基于Spark Streaming整合Kafka-0.8.2.1官方文档. 本文主要讲解了Spark Streaming如何从Kafka接收数据.Spark Streaming从Kafka接 ...

  8. 必读:Spark与kafka010整合

    版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/rlnLo2pNEfx9c/article/details/79648890 SparkStreami ...

  9. Spark之 SparkSql整合hive

    整合: 1,需要将hive-site.xml文件拷贝到Spark的conf目录下,这样就可以通过这个配置文件找到Hive的元数据以及数据存放位置. 2,如果Hive的元数据存放在Mysql中,我们还需 ...

随机推荐

  1. Win10有效降低磁盘100%读写

    具体方法: 1.按下WIN+R调出运行,然后输入 regedit 回车; 2.在注册表编辑器中定位到:HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet001\Se ...

  2. 各大主流.Net的IOC框架

    Autofac下载地址:http://code.google.com/p/autofac/ Castle Windsor下载地址:http://sourceforge.net/projects/cas ...

  3. jquery checkbox选框操作

    <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"> <html> <hea ...

  4. 个人网站不输入www.直接domain.com访问不了,输入www.domain.com能访问

      网站访问跳转到/cgi-sys/defaultwebpage.cgi页面原因之一ip地址不对解决后,www.domain.com是可以访问了.但是直接domain.com去不能?   我记得刚开始 ...

  5. 【jQuery】清空表单内容

    function resertForm(){ $(':input','#formId') .not(':button, :submit, :reset, :hidden') .val('') .rem ...

  6. iOS:即时通讯之<了解篇 SocKet>

    什么是socket? 计算机专业术语就是: 网络上的两个程序通过一个双向的通信连接实现数据的交换,这个连接的一端称为一个socket.Socket的英文原义是“孔”或“插座”.作为BSD UNIX的进 ...

  7. jpa多条件查询重写Specification的toPredicate方法(转)

    Spring Data JPA支持JPA2.0的Criteria查询,相应的接口是JpaSpecificationExecutor.Criteria 查询:是一种类型安全和更面向对象的查询 . 这个接 ...

  8. unity, 延迟执行代码

    使用协程实现比较方便,可以带参数. void Start(){ StartCoroutine(delayLaunchRocket(rocket,2.0f)); } IEnumerator delayL ...

  9. 不停mysql服务添加从库的两种方式

    现在生产环境MySQL数据库是一主一从,由于业务量访问不断增大,故再增加一台从库.前提是不能影响线上业务使用,也就是说不能重启MySQL服务,为了避免出现其他情况,选择在网站访问量低峰期时间段操作. ...

  10. C 常量指针和指针常量

    * (指针)和 const(常量) 谁在前先读谁 :*象征着地址,const象征着内容:谁在前面谁就不允许改变. 例子: ; ; ; int const *p1 = &b;//const 在前 ...