【BZOJ3037】创世纪

Description

applepi手里有一本书《创世纪》,里面记录了这样一个故事……
上帝手中有着N 种被称作“世界元素”的东西,现在他要把它们中的一部分投放到一个新的空间中去以建造世界。每种世界元素都可以限制另外一种世界元素,所以说上帝希望所有被投放的世界元素都有至少一个没有被投放的世界元素能够限制它,这样上帝就可以保持对世界的控制。
由于那个著名的有关于上帝能不能制造一块连自己都不能举起的大石头的二律背反命题,我们知道上帝不是万能的,而且不但不是万能的,他甚至有事情需要找你帮忙——上帝希望知道他最多可以投放多少种世界元素,但是他只会O(2^N) 级别的算法。虽然上帝拥有无限多的时间,但是他也是个急性子。你需要帮助上帝解决这个问题。

Input

第一行是一个整数N,表示世界元素的数目。
第二行有 N 个整数A1, A2, …, AN。Ai 表示第i 个世界元素能够限制的世界元素的编号。

Output

一个整数,表示最多可以投放的世界元素的数目。

Sample Input

6
2 3 1 3 6 5

Sample Output

3

HINT

样例说明
选择2、3、5 三个世界元素即可。分别有1、4、6 来限制它们。

数据范围与约定
对于30% 的数据,N≤10。
对于60% 的数据, N≤10^5。
对于 100% 的数据,N≤10^6,1≤Ai≤N,Ai≠i。

题解:基环树的DP

因为每个元素只能限制一个别的元素,而一个元素可以被许多个元素限制,我们就被限制点作为限制点的父亲(也就是说一个点被它所有儿子限制)

先假设没有环,f[i]表示选择i,g[i]表示不选择i,此时无脑DP

然后如果出现了环该怎么办?

假设在加入边 u->v(v能控制u)时出现了环,说明u一定在v的子树里,于是先DFS以u为根的子树,然后分两种情况

1.选择v,那么直接DFS以v为根的子树,用f[v]更新答案

2.不选v,那么u可以免费选择,即f[i]=g[i]+1,然后在DFS以v为根的子树,用g[v]更新答案

注意DFS(v)的时候不要进入以u为根的子树

同BZ2068

#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
const int maxn=1000010;
int n,m,ans,now,cnt;
int to[maxn],next[maxn],head[maxn],f[maxn],g[maxn],fa[maxn],ra[maxn],rb[maxn];
int find(int x)
{
return (fa[x]==x)?x:(fa[x]=find(fa[x]));
}
void dfs(int x)
{
int i,t=1<<30;
g[x]=0;
for(i=head[x];i!=-1;i=next[i])
{
if(to[i]!=now) dfs(to[i]);
g[x]+=max(f[to[i]],g[to[i]]);
t=min(t,max(f[to[i]],g[to[i]])-g[to[i]]);
}
f[x]=g[x]+1-t;
}
void add(int a,int b)
{
to[cnt]=b;
next[cnt]=head[a];
head[a]=cnt++;
}
int main()
{
scanf("%d",&n);
int i,a;
memset(head,-1,sizeof(head));
for(i=1;i<=n;i++) fa[i]=i;
for(i=1;i<=n;i++)
{
scanf("%d",&a);
if(find(a)!=find(i))
{
add(a,i);
fa[fa[a]]=fa[i];
}
else ra[++m]=a,rb[m]=i;
}
for(i=1;i<=m;i++)
{
dfs(ra[i]),now=ra[i];
dfs(rb[i]),a=f[rb[i]];
f[ra[i]]=g[ra[i]]+1;
dfs(rb[i]),ans+=max(a,g[rb[i]]);
}
printf("%d",ans);
return 0;
}

【BZOJ3037/2068】创世纪/[Poi2004]SZP 树形DP的更多相关文章

  1. [bzoj3037/2068]创世纪[Poi2004]SZP_树形dp_并查集_基环树

    创世纪 SZP bzoj-3037/2068 Poi-2004 题目大意:给你n个物品,每个物品可以且仅可以控制一个物品.问:选取一些物品,使得对于任意的一个被选取的物品来讲,都存在一个没有被选取的物 ...

  2. BZOJ_2068_[Poi2004]SZP_树形DP

    BZOJ_2068_[Poi2004]SZP_树形DP Description Byteotian 中央情报局 (BIA) 雇佣了许多特工. 他们每个人的工作就是监视另一名特工. Byteasar 国 ...

  3. BZOJ3037 创世纪(基环树DP)

    基环树DP,攻的当受的儿子,f表选,g表不选.并查集维护攻受关系.若有环则记录,DP受的后把它当祖宗,再DP攻的. #include <cstdio> #include <iostr ...

  4. 创世纪 BZOJ3037 & [Poi2004]SZP BZOJ2068

    分析: 树形DP中的一种,基环树DP 针对每一个环跑DP,f[i],g[i]分别表示选或者不选,之后我们注意每次遍历的时候,不要重复遍历. 附上代码: #include <cstdio> ...

  5. BZOJ3037 创世纪[基环树DP]

    实际上基环树DP的名字是假的.. 这个限制关系可以看成每个点有一条出边,所以就是一个内向基环树森林. 找出每个基环树的环,然后对于树的部分,做DP,设状态选或不选为$f_{x,0/1}$,则 $f_{ ...

  6. bzoj 2067: [Poi2004]SZN【贪心+二分+树形dp】

    第一问就是Σ(deg[u]-1)/2+1 第二问是二分,判断的时候考虑第一问的贪心规则,对于奇度数的点,两两配对之后一条延伸到上面:对于欧度数的点,两两配对或者deg[u]-2的点配对,然后一条断在这 ...

  7. 树形DP 复习

    树形DP 树形DP:建立在树上的动态规划 一般有两种传递方式:根→叶或叶→根 前者出现在换根DP中,一般操作是求出某一个点的最优解,再通过这一个点推知其他点的最优解. 后者是树形DP的常见形式,一般树 ...

  8. Poetize4 创世纪

    3037: 创世纪 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 123  Solved: 66[Submit][Status] Description ...

  9. CH6401 创世纪

    6401 创世纪 0x60「图论」例题 描述 上帝手中有 N(N≤10^6) 种世界元素,每种元素可以限制另外1种元素,把第 i 种世界元素能够限制的那种世界元素记为 A[i].现在,上帝要把它们中的 ...

随机推荐

  1. 总结golang之map

    总结golang之map 2017年04月13日 23:35:53 趁年轻造起来 阅读数:18637 标签: golangmapgo 更多 个人分类: golang   版权声明:本文为博主原创文章, ...

  2. 简单十招提高jQuery执行效率

    1. 使用最新版本的jQuery jQuery的版本更新很快,你应该总是使用最新的版本.因为新版本会改进性能,还有很多新功能. 下面就来看看,不同版本的jQuery性能差异有多大.这里是三条最常见的j ...

  3. 【Java面试题】32 ArrayList和Vector的区别

    1. Vector & ArrayList  相同点: 1.ArrayList和Vector都是继承了相同的父类和实现了相同的接口 2.底层都是数组实现的 3.初始默认长度都为10. 不同点: ...

  4. 【Java面试题】27 多线程笔试面试概念问答

    第一题:线程的基本概念.线程的基本状态及状态之间的关系? 线程,有时称为轻量级进程,是CPU使用的基本单元:它由线程ID.程序计数器.寄存器集合和堆栈组成.它与属于同一进程的其他线程共享其代码段.数据 ...

  5. 利用PHPExcel导出Excel相关设置

    功能包括: 1.设置单元格格式,包括单元格边框.单元格高度.单元格宽度 2.合并指定的单元格 3.设置Excel数据源,并将数据源保护起来(这个是为了实现单元格下拉选项功能) 4.设置字体样式 pub ...

  6. 关于Bundle

    1. 黄色的文件夹,打包的时候,不会建立目录,主要保存程序文件 - 素材不允许重名 2. 蓝色的文件夹,打包的时候,会建立目录,可以分目录的存储素材文件 - 素材可以重名 - 游戏的场景,backgr ...

  7. jquery promise

    认识jQuery的Promise   先前了解了ES6的Promise对象,来看看jQuery中的Promise,也就是jQuery的Deferred对象. 打开浏览器的控制台先. <scrip ...

  8. Java几款性能分析工具的对比

    在给客户的应用程序维护的过程中,我注意到在高负载下的一些性能问题.理论上,增加对应用程序的负载会使性能等比率的下降.然而,我认为性能下降的比率远远高于负载的增加.我也发现,性能可以通过改变应用程序的逻 ...

  9. php通过字符串生存hashCode

    /** * * 生存hashCode * */function hashCode($str){ if(empty($str)) return ''; $str = strtoupper($str); ...

  10. error:2014 Commands out of sync; you can't run this command now

    如下错误: 分析原因: 前端ajax请求后台,共用同一个链接. 搜索别人的解决方案:http://blog.csdn.net/grass_ring/article/details/3499402 用m ...