Nice Patterns Strike Back

Time Limit: 20000/10000MS (Java/Others)Memory Limit: 128000/64000KB (Java/Others)

Problem Description

You might have noticed that there is the new fashion among rich people to have their yards tiled with black and white tiles, forming a pattern. The company Broken Tiles is well known as the best tiling company in our region. It provides the widest choices of nice patterns to tile your yard with. The pattern is nice if there is no square of size 2 × 2, such that all tiles in it have the same color. So patterns on the figure 1 are nice, while patterns on the figure 2 are not.

The president of the company wonders whether the variety of nice patterns he can provide to the clients is large enough. Thus he asks you to find out the number of nice patterns that can be used to tile the yard of size N × M . Now he is interested in the long term estimation, so he suggests N ≤ 10100. However, he does not like big numbers, so he asks you to find the answer modulo P .

Input

      The input file contains three integer numbers: N (1 ≤ N ≤ 10100), M (1 ≤ M ≤ 5) and P (1 ≤ P ≤10000).

Output

      Write the number of nice patterns of size N × M modulo P to the output file.

Sample Input

2 2 5
3 3 23

Sample Output

4
0

Source

Andrew Stankevich Contest 1
 
 
算法:因为m<=5,每一行的状态可以用一个二进制数表示,构造系数矩阵A,其中aij为1表示状态i和j不冲突,为0表示冲突,结果为A^(n-1)中矩阵各元素之和,由于n很大,所以涉及到高精度和矩阵快速幂,所以我用Java写了。
 
 
 
 import java.awt.Checkbox;
import java.io.BufferedInputStream;
import java.io.BufferedOutputStream;
import java.io.PrintWriter;
import java.math.BigInteger;
import java.util.Scanner; public class Main { static int p; public static class Matrix implements Cloneable {
long[][] a;
int d; public Matrix(int d) {
this.d = d;
a = new long[d][d];
} public Matrix multiply(Matrix m) {
Matrix ret = new Matrix(d);
for (int i = 0; i < d; ++i) {
for (int j = 0; j < d; ++j) {
for (int k = 0; k < d; ++k) {
ret.a[i][j] += a[i][k] * m.a[k][j];
ret.a[i][j] %= p;
}
}
}
return ret;
} public Matrix clone() {
Matrix ret = new Matrix(d);
ret.a = a.clone();
return ret;
} Matrix pow(BigInteger cnt) {
// 先生成一个单位矩阵
Matrix eye = new Matrix(d);
for (int i = 0; i < d; i++)
eye.a[i][i] = 1; for (int i = cnt.bitLength() - 1; i >= 0; i--) {
eye = eye.multiply(eye);
if (cnt.testBit(i)) {
eye = eye.multiply(this);
}
}
return eye;
}
} static boolean check(int x, int y, int m) {
for (int i = 1; i < m; i++) {
if ((x & 3) == (y & 3) && (x & 1) == ((x & 2) >> 1)) {
return false;
}
x >>= 1;
y >>= 1;
} return true;
} public static void main(String[] args) { Scanner cin = new Scanner(new BufferedInputStream(System.in));
PrintWriter cout = new PrintWriter(new BufferedOutputStream(System.out)); int T = cin.nextInt(); while (T-- != 0) {
BigInteger n = cin.nextBigInteger();
int m = cin.nextInt();
p = cin.nextInt(); // 生成矩阵A
int d = (1 << m);
Matrix A = new Matrix(d);
for (int i = 0; i < d; i++)
for (int j = 0; j < d; j++) {
if (check(i, j, m))
A.a[i][j] = 1;
} A = A.pow(n.subtract(BigInteger.ONE)); long ans = 0;
for (int i = 0; i < d; i++)
for (int j = 0; j < d; j++) {
ans = (ans + A.a[i][j]) % p;
} cout.println(ans);
if (T != 0)
cout.println("");
// System.out.println(ans);
} cin.close();
cout.close(); }
}

ZOJ2317-Nice Patterns Strike Back:矩阵快速幂,高精度的更多相关文章

  1. HDU5411——CRB and Puzzle——————【矩阵快速幂优化dp】

    CRB and Puzzle Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)To ...

  2. 矩阵快速幂 HDU 4565 So Easy!(简单?才怪!)

    题目链接 题意: 思路: 直接拿别人的图,自己写太麻烦了~ 然后就可以用矩阵快速幂套模板求递推式啦~ 另外: 这题想不到或者不会矩阵快速幂,根本没法做,还是2013年长沙邀请赛水题,也是2008年Go ...

  3. 51nod 算法马拉松18 B 非010串 矩阵快速幂

    非010串 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 如果一个01字符串满足不存在010这样的子串,那么称它为非010串. 求长度为n的非010串的个数.(对1e9+7取模) ...

  4. 51nod 1113 矩阵快速幂

    题目链接:51nod 1113 矩阵快速幂 模板题,学习下. #include<cstdio> #include<cmath> #include<cstring> ...

  5. 【66测试20161115】【树】【DP_LIS】【SPFA】【同余最短路】【递推】【矩阵快速幂】

    还有3天,今天考试又崩了.状态还没有调整过来... 第一题:小L的二叉树 勤奋又善于思考的小L接触了信息学竞赛,开始的学习十分顺利.但是,小L对数据结构的掌握实在十分渣渣.所以,小L当时卡在了二叉树. ...

  6. HDU5950(矩阵快速幂)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5950 题意:f(n) = f(n-1) + 2*f(n-2) + n^4,f(1) = a , f(2 ...

  7. 51nod 1126 矩阵快速幂 水

    有一个序列是这样定义的:f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7. 给出A,B和N,求f(n)的值. Input 输 ...

  8. hdu2604(递推,矩阵快速幂)

    题目链接:hdu2604 这题重要的递推公式,找到公式就很easy了(这道题和hdu1757(题解)类似,只是这道题需要自己推公式) 可以直接找规律,推出递推公式,也有另一种找递推公式的方法:(PS: ...

  9. 矩阵乘法&矩阵快速幂&矩阵快速幂解决线性递推式

    矩阵乘法,顾名思义矩阵与矩阵相乘, 两矩阵可相乘的前提:第一个矩阵的行与第二个矩阵的列相等 相乘原则: a b     *     A B   =   a*A+b*C  a*c+b*D c d     ...

随机推荐

  1. B - Network - uva 315(求割点)

    题意:给一个无向连通图,求出割点的数量. 首先输入一个N(多实例,0结束),下面有不超过N行的数,每行的第一个数字代表后面的都和它存在边,0表示行输入的结束(很蛋疼的输入方式). 分析:割点的模板题 ...

  2. build/core/base_rules.mk:195: already define

    编译错误: build/core/base_rules.mk:195: *** packages/apps/ScanDemo: MODULE.TARGET.APPS.ScanDemo already ...

  3. 海量数据挖掘--DB优化篇

    上一篇博客我们介绍了针对大数据量的处理,我们应该对程序做什么样的处理,但是一个程序的优化是有底线的,我们要考虑人力,物力,程序的优化是海量数据处理的一部分,这里介绍我们的重头戏,对数据库的优化! 这里 ...

  4. 标准爬虫初探,来自Python之父的大餐!

    首先不得不承认自己做了标题党.本文实质是分析500lines or less的crawlproject,这个project的地址是https://github.com/aosabook/500line ...

  5. VritualBox 中Debian安装tool

    VritualBox 中Debian安装tool 环境 Debian 8 VirtualBox 配置Debian的源 #163源 deb http://mirrors.163.com/debian/ ...

  6. oracle之时间转换

    :取得当前日期是本月的第几周 SQL> select to_char(sysdate,'YYYYMMDD W HH24:MI:SS') from dual; TO_CHAR(SYSDATE,'Y ...

  7. asp.net动态设置button的Text,Enabled属性,向后台传递参数

    前台代码:根据后台传递过来的参数动态设置 <asp:Button ID="Button1" runat="server" CommandArgument= ...

  8. 华硕笔记本怎么设置u盘启动(两种方法)

    华硕笔记本怎么设置u盘启动(两种方法) 华硕笔记本怎么设置u盘启动.我想用U盘安装系统但是 我不知道如何设置U盘启动,那么该如何设置呢?下面和大家分享一下我的经验,希望能够帮到大家.如果你的系统是预装 ...

  9. poj3254状压DP入门

    G - 状压dp Crawling in process... Crawling failed Time Limit:2000MS     Memory Limit:65536KB     64bit ...

  10. JavaScript学习笔记(三十八) 复制属性继承

    复制属性继承(Inheritance by Copying Properties) 让我们看一下另一个继承模式—复制属性继承(inheritance by copying properties).在这 ...