GDAL生成Erdas Imagine
GDAL原生支持超过100种栅格数据类型,涵盖所有主流GIS与RS数据格式,包括
• ArcInfo grids, ArcSDE raster, Imagine, Idrisi, ENVI, GRASS, GeoTIFF
• HDF4, HDF5
• USGS DOQ, USGS DEM
• ECW, MrSID
• TIFF, JPEG, JPEG2000, PNG, GIF, BMP
完整的支持列表可以参考http://www.gdal.org/formats_list.html
导入GDAL支持库
旧版本(1.5以前):import gdal, gdalconst
新版本(1.6以后):from osgeo import gdal, gdalconst
gdal和gdalconst最好都要导入,其中gdalconst中的常量都加了前缀,力图与其他的module冲突最小。所以对gdalconst你可以直接这样导入:from osgeo.gdalconst import *
GDAL数据驱动,与OGR数据驱动类似,需要先创建某一类型的数据驱动,再创建响应的栅格数据集。
一次性注册所有的数据驱动,但是只能读不能写:gdal.AllRegister()
单独注册某一类型的数据驱动,这样的话可以读也可以写,可以新建数据集:
driver = gdal.GetDriverByName('HFA')
driver.Register()
打开已有的栅格数据集:
fn = 'aster.img'
ds = gdal.Open(fn, GA_ReadOnly)
if ds is None:
print 'Could not open ' + fn
sys.exit(1)
读取栅格数据集的x方向像素数,y方向像素数,和波段数
cols = ds.RasterXSize
rows = ds.RasterYSize
bands = ds.RasterCount
注意后面没有括号,因为他们是属性(properties)不是方法(methods)
读取地理坐标参考信息(georeference info)
GeoTransform是一个list,存储着栅格数据集的地理坐标信息
adfGeoTransform[0]
adfGeoTransform[1]
adfGeoTransform[2]
adfGeoTransform[3]
adfGeoTransform[4]
adfGeoTransform[5]
注意栅格数据集的坐标一般都是以左上角为基准的。
下面的例子是从一个栅格数据集中取出Geotransform作为一个list,然后读取其中的数据
geotransform = ds.GetGeoTransform()
originX = geotransform[0]
originY = geotransform[3]originY = geotransform[3]
pixelWidth = geotransform[1]
pixelHeight = geotransform[5]
计算某一坐标对应像素的相对位置(pixel offset),也就是该坐标与左上角的像素的相对位置,按像素数计算,计算公式如下:
xOffset = int((x – originX) / pixelWidth)
yOffset = int((y – originY) / pixelHeight)
读取某一像素点的值,需要分两步
首先读取一个波段(band):GetRasterBand(),其参数为波段的索引号
然后用ReadAsArray(, , , ),读出从(xoff,yoff)开始,大小为(xsize,ysize)的矩阵。如果将矩阵大小设为1X1,就是读取一个像素了。但是这一方法只能将读出的数据放到矩阵中,就算只读取一个像素也是一样。例如:
band = ds.GetRasterBand(1)
data = band.ReadAsArray(xOffset, yOffset, 1, 1)
如果想一次读取一整张图,那么将offset都设定为0,size则设定为整个图幅的size,例如:
data = band.ReadAsArray(0, 0, cols, rows)
但是要注意,从data中读取某一像素的值,必须要用data[yoff, xoff]。注意不要搞反了。数学中的矩阵是[row,col],而这里恰恰相反!这里面row对应y轴,col对应x轴。
注意在适当的时候释放内存,例如band = None 或者dataset = None。尤其当图很大的时候
如何更有效率的读取栅格数据?显然一个一个的读取效率非常低,将整个栅格数据集都塞进二维数组也不是个好办法,因为这样占的内存还是很多。更好的方法是按块(block)来存取数据,只把要用的那一块放进内存。本周的样例代码中有一个utils模块,可以读取block大小。
例如:
import utils
blockSize = utils.GetBlockSize(band)
xBlockSize = blockSize[0]
yBlockSize = blockSize[1]
平铺(tiled),即栅格数据按block存储。有的格式,例如GeoTiff没有平铺,一行是一个block。Erdas imagine格式则按64x64像素平铺。
如果一行是一个block,那么按行读取是比较节省资源的。
如果是平铺的数据结构,那么设定ReadAsArray()的参数值,让它一次只读入一个block,就是效率最高的方法了。例如:
rows = 13, cols = 11, xBSize = 5, yBSize = 5
for i in range(0, rows, yBSize):
if i + yBSize < rows:
numRows = yBSize
else:
numRows = rows – i
for j in range(0, cols, xBSize):
if j + xBSize < cols:
numCols = xBSize
else:
numCols = colsnumCols = cols – j
data = band.ReadAsArray(j, i, numCols, numRows)
这一段代码具有通用性,可以时常拿来用的。
下面介绍一点二维数组的处理技巧
这里要用到两个库,Numeric和numpy。Numeric比较老了,FWTools用它。自己安装配置的话还是配功能更强的numpy。
数据类型转换:
data = band.ReadAsArray(j, i, nCols, nRows)
data = data.astype(Numeric.Float) # Numeric
data = data.astype(numpy.float) # numpy
或者简单点只写一句
data = band.ReadAsArray(j, i, nCols, nRows).astype(Numeric.Float)
掩膜mask
这是Numeric和numpy库的功能,输入一个数组和条件,输出一个二值数组。例如
mask = Numeric.greater(data, 0)mask = Numeric.greater(data, 0)
>>> a = Numeric.array([0, 4, 6, 0, 2])
>>> print a
[0 4 6 0 2]
>>> mask = Numeric.greater(a, 0)
>>> print mask
[0 1 1 0 1]
数组求和
>>> a = Numeric.array([0, 4, 6, 0, 2])
>>> print a>>> print a
[0 4 6 0 2]
>>> print Numeric.sum(a)
12
如果是二维数组,那sum就会返回一个一维数组
>>> b = Numeric.array([a, [5, 10, 0, 3, 0]])
>>> print b
[[ 0 4 6 0 2]
[ 5 10 0 3 0]]
>>> print Numeric.sum(b)>>> print Numeric.sum(b)
[ 5 14 6 3 2]
所以,二维数组的求和就要这样
>>> print Numeric.sum(Numeric.sum(b))
30
这里有一个小技巧,统计大于0的像素个数,可以联合运用mask和sum两个函数
>>> print a
[0 4 6 0 2]
>>> mask = Numeric.greater(a, 0)
>>> print mask
[0 1 1 0 1]
>>> print Numeric.sum(mask)
3
GDAL生成Erdas Imagine的更多相关文章
- ERDAS IMAGINE 9.2安装破解方法
Install the application. Copy the license.dat and ERDAS.exe to C:\Program Files\Leica Geosystems\Sha ...
- ERDAS IMAGINE 2014 32位 破解安装
1. 安装Install ERDAS Foundation 2014 2. 安装ERDAS IMAGINE 2014 32位 3. 安装Intergraph ...
- GDAL 生成shp文件
附件:http://pan.baidu.com/s/1i3GPwrV(C#版GDAL接口.dll) 示例程序: http://pan.baidu.com/s/1jpIKQ (程序是在vs2008 x ...
- 翻译:利用GDAL生成cogeoff文件
翻译自: Introducing the AWS Lambda Tiler https://hi.stamen.com/stamen-aws-lambda-tiler-blog-post-76fc11 ...
- 部分GDAL工具功能简介
主要转自http://blog.csdn.net/liminlu0314?viewmode=contents 部分GDAL工具功能简介 gdalinfo.exe 显示GDAL支持的各种栅格文件的信息. ...
- GDAL——命令使用专题——gdalinfo命令
GDAL——命令使用专题——gdalinfo命令 前言 GDAL(Geospatial Data Abstraction Library)是一个在X/MIT许可协议下的开源栅格空间数据转换库.它利用 ...
- mongodb gdal 矢量数据格式驱动
写了个mongodb的gdal driver,放在了github上,如果你需要,欢迎加入mongogis group. 直接的效果是使得QGIS, GeoServer, MapServer, ArcG ...
- GDAL库扩展Landsat系列MTL文件格式支持
Landsat系列卫星提供的数据,一般都是每个波段一个tif文件,然后外加一个MTL.txt的元数据文件,使用gdal可以直接打开每个波段的tif文件,但是有时候想在打开tif数据的同时能够自动读取M ...
- GDAL库三个读取Jpeg2000格式驱动测试
0.目的 GDAL库中提供了四五种读取Jpeg2000的驱动,但是各个驱动读取数据的效率各不相同,下面就针对三种读取jpeg2000的效率进行测试. GDAL库中提供的读取Jpeg2000的驱动有下面 ...
随机推荐
- mono for android Json 上传文件
void button_Click(object sender, EventArgs e) { string Url = "上传地址,服务器端负责接收"; byte[] fbyte ...
- CSharpGL(20)用unProject和Project实现鼠标拖拽图元
CSharpGL(20)用unProject和Project实现鼠标拖拽图元 效果图 例如,你可以把Big Dipper这个模型拽成下面这个样子. 配合旋转,还可以继续拖拽成这样. 当然,能拖拽的不只 ...
- 反编译.NET工程
工具: 1. .Net Reflector 2. 远程桌面 步骤: 1. 远程桌面连接到服务器 IP,port,user,pwd 2. 打开 IIS 这里面就是所部属的网 ...
- APP测试点总结(功能,交互,死机崩溃状态分析,容易出错的检查点)
APP测试点总结(功能,交互,死机崩溃状态分析,容易出错的检查点) 版权声明:本文为博主原创文章,未经博主允许不得转载. 最近涉足APP端测试,常见检查点总结如下: 一.业务方面: 1. 注册( ...
- redis的面试题
1:使用redis有哪些好处? (1) 速度快,因为数据存在内存中,类似于HashMap,HashMap的优势就是查找和操作的时间复杂度都是O(1) (2) 支持丰富数据类型,支持string,lis ...
- ES性能测试
测试背景 因为ES(ElasticSearch)前段时间查询效率有点慢,技术小组对索引做了一些改动,因此需要测试一下修改后的查询效率,跟之前的结果做一下对比,所以有了这次测试. 需求简述 ...
- scikit-learn随机森林调参小结
在Bagging与随机森林算法原理小结中,我们对随机森林(Random Forest, 以下简称RF)的原理做了总结.本文就从实践的角度对RF做一个总结.重点讲述scikit-learn中RF的调参注 ...
- ASP.NET 5 - $.ajax post JSON.stringify(para) is null
JavaScript 代码: var para = {}; para.id = $("#ad-text-id").val(); para.title = $("#ad-t ...
- Vertica 导出数据测试用例
需求:构建简单的测试用例,完成演示Vertica导出数据的功能. 测试用例:导出test业务用户t_jingyu表中的数据. 一.初始化测试环境 二.导出数据 2.1 vsql命令说明帮助 2.2 导 ...
- MySQL笔记---视图,存储过程, 触发器的使用入门
大二学数据库的时候,只是隐约听到老师提起过视图啊,存储过程啊,触发器啊什么的,但只是淡淡的记住了名字,后来自己做些小项目,小程序,也没有用上过,都只是简单的建表,关联表之类的,导致我对这些东西的理解只 ...