[点连通度与边连通度]

  在一个无向连通图中,如果有一个顶点集合,删除这个顶点集合,以及这个集合中所有顶点相关联的边以后,原图变成多个连通块,就称这个点集为割点集合。一个图的点连通度的定义为,最小割点集合中的顶点数。

类似的,如果有一个边集合,删除这个边集合以后,原图变成多个连通块,就称这个点集为割边集合。一个图的边连通度的定义为,最小割边集合中的边数。

                  [双连通图、割点与桥]

  如果一个无向连通图的点连通度大于1,则称该图是点双连通的(point biconnected),简称双连通重连通。一个图有割点,当且仅当这个图的点连通度为1,则割点集合的唯一元素被称为割点(cut point),又叫关节点(articulation point)

  如果一个无向连通图的边连通度大于1,则称该图是边双连通的(edge biconnected),简称双连通或重连通。一个图有桥,当且仅当这个图的边连通度为1,则割边集合的唯一元素被称为桥(bridge),又叫关节边(articulation edge)。

可以看出,点双连通与边双连通都可以简称为双连通,它们之间是有着某种联系的,下文中提到的双连通,均既可指点双连通,又可指边双连通。

                  [双连通分支]

  在图G的所有子图G'中,如果G'是双连通的,则称G'为双连通子图。如果一个双连通子图G'它不是任何一个双连通子图的真子集,则G'为极大双连通子图双连通分支(biconnected component),或重连通分支,就是图的极大双连通子图。特殊的,点双连通分支又叫做

                  [求割点与桥]

  该算法是R.Tarjan发明的。对图深度优先搜索,定义DFS(u)为u在搜索树(以下简称为树)中被遍历到的次序号。定义Low(u)为u或u的子树中能通过非父子边追溯到的最早的节点,即DFS序号最小的节点。根据定义,则有:

Low(u)=Min { DFS(u) DFS(v) (u,v)为后向边(返祖边) 等价于 DFS(v)<DFS(u)且v不为u的父亲节点 Low(v) (u,v)为树枝边(父子边) }

一个顶点u是割点,当且仅当满足(1)或(2) (1) u为树根,且u有多于一个子树。 (2) u不为树根,且满足存在(u,v)为树枝边(或称父子边,即u为v在搜索树中的父亲),使得DFS(u)<=Low(v)。

一条无向边(u,v)是桥,当且仅当(u,v)为树枝边,且满足DFS(u)<Low(v)。

                  [求双连通分支]

下面要分开讨论点双连通分支与边双连通分支的求法。

  对于点双连通分支,实际上在求割点的过程中就能顺便把每个点双连通分支求出。建立一个栈,存储当前双连通分支,在搜索图时,每找到一条树枝边或后向边(非横叉边),就把这条边加入栈中。如果遇到某时满足DFS(u)<=Low(v),说明u是一个割点,同时把边从栈顶一个个取出,直到遇到了边(u,v),取出的这些边与其关联的点,组成一个点双连通分支。割点可以属于多个点双连通分支,其余点和每条边只属于且属于一个点双连通分支。

  对于边双连通分支,求法更为简单。只需在求出所有的桥以后,把桥边删除,原图变成了多个连通块,则每个连通块就是一个边双连通分支。桥不属于任何一个边双连通分支,其余的边和每个顶点都属于且只属于一个边双连通分支。

                  [构造双连通图]

  一个有桥的连通图,如何把它通过加边变成边双连通图?方法为首先求出所有的桥,然后删除这些桥边,剩下的每个连通块都是一个双连通子图。把每个双连通子图收缩为一个顶点,再把桥边加回来,最后的这个图一定是一棵树,边连通度为1。

  统计出树中度为1的节点的个数,即为叶节点的个数,记为leaf。则至少在树上添加(leaf+1)/2条边,就能使树达到边二连通,所以至少添加的边数就是(leaf+1)/2。具体方法为,首先把两个最近公共祖先最远的两个叶节点之间连接一条边,这样可以把这两个点到祖先的路径上所有点收缩到一起,因为一个形成的环一定是双连通的。然后再找两个最近公共祖先最远的两个叶节点,这样一对一对找完,恰好是(leaf+1)/2次,把所有点收缩到了一起。

                  [图的双连通性问题例题]

备用交换机 求图的割点,直接输出。

pku 3177(3352) Redundant Paths 求桥,收缩边双连通子图,构造边双连通图。

POI 1999 仓库管理员 Store-keeper 求点双连通子图。

BYVoid 原创讲解,转载请注明。

原文地址:https://www.byvoid.com/blog/biconnect

图的割点 桥 双连通(byvoid)的更多相关文章

  1. tarjan算法应用 割点 桥 双连通分量

    tarjan算法的应用. 还需多练习--.遇上题目还是容易傻住 对于tarjan算法中使用到的Dfn和Low数组. low[u]:=min(low[u],dfn[v])--(u,v)为后向边,v不是u ...

  2. Tarjan-割点&桥&双连通

    $Tarjan$求割点 感觉图论是个好神奇的东西啊,有各种奇奇怪怪的算法,而且非常巧妙. 周末之前说好回来之后进行一下学术交流,于是wzx就教了$Tarjan$,在这里我一定要说: wzx  AK   ...

  3. BZOJ BLO 1123 (割点)【双连通】

    <题目链接> 以下内容转自李煜东的<算法竞赛进阶指南> 题目大意:现在给定一张连通的无向图,不包含重边.现在输出$n$个整数,表示将第$i$个节点的所有与其它节点相关联的边去掉 ...

  4. 图论之tarjan真乃神人也,强连通分量,割点,桥,双连通他都会

    先来%一下Robert Tarjan前辈 %%%%%%%%%%%%%%%%%% 然后是热情感谢下列并不止这些大佬的博客: 图连通性(一):Tarjan算法求解有向图强连通分量 图连通性(二):Tarj ...

  5. Tarjan算法——强连通、双连通、割点、桥

    Tarjan算法 概念区分 有向图 强连通:在有向图\(G\)中,如果两个顶点\(u, v\ (u \neq v)\)间有一条从\(u\)到\(v\)的有向路径,同时还有一条从\(v\)到\(u\)的 ...

  6. Tarjan应用:求割点/桥/缩点/强连通分量/双连通分量/LCA(最近公共祖先)【转】【修改】

    一.基本概念: 1.割点:若删掉某点后,原连通图分裂为多个子图,则称该点为割点. 2.割点集合:在一个无向连通图中,如果有一个顶点集合,删除这个顶点集合,以及这个集合中所有顶点相关联的边以后,原图变成 ...

  7. (转)Tarjan应用:求割点/桥/缩点/强连通分量/双连通分量/LCA(最近公共祖先)

    基本概念: 1.割点:若删掉某点后,原连通图分裂为多个子图,则称该点为割点. 2.割点集合:在一个无向连通图中,如果有一个顶点集合,删除这个顶点集合,以及这个集合中所有顶点相关联的边以后,原图变成多个 ...

  8. Tarjan算法应用 (割点/桥/缩点/强连通分量/双连通分量/LCA(最近公共祖先)问题)(转载)

    Tarjan算法应用 (割点/桥/缩点/强连通分量/双连通分量/LCA(最近公共祖先)问题)(转载) 转载自:http://hi.baidu.com/lydrainbowcat/blog/item/2 ...

  9. 图的强连通&双连通

    http://www.cnblogs.com/wenruo/p/4989425.html 强连通 强连通是指一个有向图中任意两点v1.v2间存在v1到v2的路径及v2到v1的路径. dfs遍历一个图, ...

随机推荐

  1. ESP8266固件修改可以控制多个IO方法

    之前在论坛上找到了一个通过ESP8266可以控制GPIO0的固件和app,但是自己做的家庭影音灯光系统是需要控制多个IO从而控制STM32.通过观看大明的视频,了解了GPIO的控制方法. 在固件的ap ...

  2. linux管理员切换与管理员密码第一次设置

    在终端输入su - root回车来切回到超级管理员,Ubuntu的默认超级管理员root密码是随机的,即每次开机都有一个新的root密码.我们可以在终端输入命令 sudo passwd,然后输入当前用 ...

  3. 生成bundle和移除bundle

    1.命令行生成bundle $ php bin/console generate:bundle --namespace=Acme/TestBundle 2.移除bundle(新的bundle) App ...

  4. python文件_目录

    #! /usr/bin/env python #coding=gbk import os import time #设置文件的默认路径,当指定的目录不存在时,引发异常:WindowsError:[er ...

  5. js 日常问题记录

    1.解决ie6下css背景图不缓存 try{ document.execCommand('BackgroundImageCache',false,true); }catch(e){} 2.为ajax设 ...

  6. #define XBYTE ((unsigned char volatile xdata *) 0)

    今天在看别人的CAN总线程序的时候,突然发现了这么一句宏定义:#define XBYTE ((unsigned char volatile xdata *) 0),以前都没注意到过.后来查了一下,发现 ...

  7. GetSystemTime API可以得到毫秒级时间

    用Now返回的日期格式中年只有2位,即2000年显示为00, 这似乎不太令人满意. 此外Now和Time都只能获得精确到秒的时间,为了得到更精确的毫秒级时间,可以使用API函数GetSystemTim ...

  8. java日期时间处理小结

    这两周时间的Java开发让我感觉到JAVA语言确实把一些简单的事情搞得很复杂,比如日期时间处理,或许是考虑不同时区国际化跨平台之类的因素,但JAVA语言处理确实让我很困惑,相信身边好多开发的同事也如此 ...

  9. poj3349(哈希+链地址法)

    给出N个六边形的6个边长,问其中是否有完全相同的两个六边形,完全相同包括边的长度和位置都要相同.边给出的顺序是逆时针或者顺时针的. 给每个6边形一个哈希值,方法是对6条边长度的平方和取模 #inclu ...

  10. PHP 字符串替换 substr_replace 与 str_replace 函数

    PHP 字符串替换 用于从字符串中替换指定字符串. 相关函数如下: substr_replace():把字符串的一部分替换为另一个字符串 str_replace():使用一个字符串替换字符串中的另一些 ...