Suppose you have to evaluate an expression like A*B*C*D*E where A,B,C,D and E are matrices. Since matrix multiplication is associative, the order in which multiplications are performed is arbitrary. However, the number of elementary multiplications needed strongly depends on the evaluation order you choose.

For example, let A be a 50*10 matrix, B a 10*20 matrix and C a 20*5 matrix. There are two different strategies to compute A*B*C, namely (A*B)*C and A*(B*C).

The first one takes 15000 elementary multiplications, but the second one only 3500.

Your job is to write a program that determines the number of elementary multiplications needed for a given evaluation strategy.

Input Specification

Input consists of two parts: a list of matrices and a list of expressions.

The first line of the input file contains one integer n (  ), representing the number of matrices in the first part. The next n lines each contain one capital letter, specifying the name of the matrix, and two integers, specifying the number of rows and columns of the matrix.

The second part of the input file strictly adheres to the following syntax (given in EBNF):

SecondPart = Line { Line } <EOF>
Line = Expression <CR>
Expression = Matrix | "(" Expression Expression ")"
Matrix = "A" | "B" | "C" | ... | "X" | "Y" | "Z"

Output Specification

For each expression found in the second part of the input file, print one line containing the word "error" if evaluation of the expression leads to an error due to non-matching matrices. Otherwise print one line containing the number of elementary multiplications needed to evaluate the expression in the way specified by the parentheses.

Sample Input

9
A 50 10
B 10 20
C 20 5
D 30 35
E 35 15
F 15 5
G 5 10
H 10 20
I 20 25
A
B
C
(AA)
(AB)
(AC)
(A(BC))
((AB)C)
(((((DE)F)G)H)I)
(D(E(F(G(HI)))))
((D(EF))((GH)I))

Sample Output

0
0
0
error
10000
error
3500
15000
40500
47500
15125
题目意思:给出字符代表矩阵的定义,计算表达示中矩阵相乘的总次数;
解题思路:定义一个stack<node>st,用node(-1,-1)代表左括号,从左到右扫描,如果是左括号则st.push(node(-1,01));如果是字母则push字母对应的矩阵;如果是右括号则把矩阵pop出来计算,一直到左括号;
#include <iostream>
#include<deque>
#include<algorithm>
#include<cstdio>
#include<stack>
#include<string>
#include<vector>
#include<map>
using namespace std; //bool check (vector<string>&v,map<string,int>&m)
//{
// for(unsigned int i=1;i<v.size();i++)
// if(m[v[i]]-m[v[i-1]]!=1)
// return false;
// return true;
//}
//int main()
//{
// int cas;
// cin>>cas;
// getchar();
// while(cas--)
// {
// int n;
// cin>>n;
// getchar();
// vector<string>v;
// string s;
// map<string ,int>m;
// for(int i=0; i<n; i++)
// {
// getline(cin,s);
// v.push_back(s);
// }
// for(int i=0; i<n; i++)
// {
// getline(cin,s);
// m[s]=i;
// }
// for(int q=0; q<n-1;)
// {
// //if(check(v,m))break;
// bool flag=1;
// for(int i=q+1; i<n; i++)
// {
// if(m[v[q]]-m[v[i]]==1)
// {
// cout<<v[i]<<endl;
// string t=v[i];
// for(int j=i; j>0; j--)
// v[j]=v[j-1];
// v[0]=t;
// flag=0;
// q=0;
// break;
// }
// }
// if(flag)q++;
// }
// cout<<endl;
// }
// return 0;
//} struct node
{
int x,y;
node(int a=0,int b=0):x(a),y(b) {}
};
int main()
{
int n;
cin>>n;
char c;
int x,y;
node arr[200];
for(int i=0; i<n; i++)
cin>>c>>x>>y,arr[c]=node(x,y);
string exp;
while(cin>>exp)
{
stack<node>st;
int sum=0;
bool flag=0;
for(int i=0; i<exp.size(); i++)
{
if(exp[i]!=')')
{
if(exp[i]=='(')
st.push(node(-1,-1));
else
st.push(arr[exp[i]]);
}
else if(!st.empty())
{
node matrix1=st.top();
st.pop();
while(st.top().x!=-1)
{
node matrix2=st.top();
st.pop();
if(matrix1.x!=matrix2.y)
{
flag=1;
cout<<"error"<<endl;
i=exp.size();
break;
}
sum+=matrix2.x*matrix2.y*matrix1.y;
matrix1=node(matrix2.x,matrix1.y);
}
st.pop();
st.push(matrix1);
}
else
{
cout<<"error"<<endl;
flag=1;
}
}
while(st.size()!=1&&!flag)
{
node matrix2=st.top();
st.pop();
node matrix1=st.top();
st.pop();
if(matrix1.y!=matrix2.x)
{
cout<<"error"<<endl;
break;
}
st.push(node(matrix1.x,matrix2.y));
sum+=matrix1.x*matrix1.y*matrix2.y;
}
if(!flag)
cout<<sum<<endl;
}
return 0;
}
												

uva-442 Matrix Chain Multiplication的更多相关文章

  1. UVA——442 Matrix Chain Multiplication

    442 Matrix Chain MultiplicationSuppose you have to evaluate an expression like A*B*C*D*E where A,B,C ...

  2. UVa 442 Matrix Chain Multiplication(矩阵链,模拟栈)

    意甲冠军  由于矩阵乘法计算链表达的数量,需要的计算  后的电流等于行的矩阵的矩阵的列数  他们乘足够的人才  非法输出error 输入是严格合法的  即使仅仅有两个相乘也会用括号括起来  并且括号中 ...

  3. stack UVA 442 Matrix Chain Multiplication

    题目传送门 题意:给出每个矩阵的行列,计算矩阵的表达式,如果错误输出error,否则输出答案 分析:表达式求值,stack 容器的应用:矩阵的表达式求值A 矩阵是a * b,B 矩阵是b * c,则A ...

  4. UVa 442 Matrix Chain Multiplication(栈的应用)

    题目链接: https://cn.vjudge.net/problem/UVA-442 /* 问题 输入有括号表示优先级的矩阵链乘式子,计算该式进行的乘法次数之和 解题思路 栈的应用,直接忽视左括号, ...

  5. UVA - 442 Matrix Chain Multiplication(栈模拟水题+专治自闭)

    题目: 给出一串表示矩阵相乘的字符串,问这字符串中的矩阵相乘中所有元素相乘的次数. 思路: 遍历字符串遇到字母将其表示的矩阵压入栈中,遇到‘)’就将栈中的两个矩阵弹出来,然后计算这两个矩阵的元素相乘的 ...

  6. 例题6-3 Matrix Chain Multiplication ,Uva 442

    这个题思路没有任何问题,但还是做了近三个小时,其中2个多小时调试 得到的经验有以下几点: 一定学会调试,掌握输出中间量的技巧,加强gdb调试的学习 有时候代码不对,得到的结果却是对的(之后总结以下常见 ...

  7. UVA 442 二十 Matrix Chain Multiplication

    Matrix Chain Multiplication Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %l ...

  8. Matrix Chain Multiplication[HDU1082]

    Matrix Chain Multiplication Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (J ...

  9. UVa442 Matrix Chain Multiplication

    // UVa442 Matrix Chain Multiplication // 题意:输入n个矩阵的维度和一些矩阵链乘表达式,输出乘法的次数.假定A和m*n的,B是n*p的,那么AB是m*p的,乘法 ...

  10. Matrix Chain Multiplication(表达式求值用栈操作)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1082 Matrix Chain Multiplication Time Limit: 2000/100 ...

随机推荐

  1. vs2008编译QT开源项目--太阳神三国杀源码分析(三) 皮肤

    太阳神三国杀的界面很绚丽,界面上按钮的图标,鼠标移入移出时图标的变化,日志和聊天Widget的边框和半透明等效果,既可以通过代码来控制,也可以使用皮肤文件qss进行控制.下面我们分析一下三国杀的qss ...

  2. Python Object Graphs — objgraph 1.7.2 documentation

    Python Object Graphs - objgraph 1.7.2 documentation Python Object Graphs¶ objgraph is a module that ...

  3. html中的table在android端显示

    转载请注明出处:http://blog.csdn.net/u012338845/article/details/46773245 開始都是用Html.fromHtml(source).来显示html的 ...

  4. hdu 4039 The Social Network

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4039 题目分类:字符串+bfs 题意:给一个人际关系图,根据关系图,给一个人推荐一个人认识 题目分析: ...

  5. hdu 1029(hash)

    传送门:Ignatius and the Princess IV 题意:给n个数,找出出现次数大于等于(n+1)/2的那个数. 分析:大水题,排个序输出中间那个即可,这里随便写个HASHMAP找出次数 ...

  6. drupal form 中图片上传

    1.创建url 链接到form $items['qianfeng/add'] = array(     'title' => t('加入信息'),     'page callback' =&g ...

  7. HDU 4814 Golden Radio Base 模拟

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4814 题目大意: 把一个正整数表示为φ进制, φ = (1+√5)/2 . 且已知: 1. φ + 1 ...

  8. Java学习之道:Java中十个常见的违规编码

    近期,我给Java项目做了一次代码清理工作.经过清理后,我发现一组常见的违规代码(指不规范的代码并不表示代码错误)反复出如今代码中.因此,我把常见的这些违规编码总结成一份列表,分享给大家以帮助Java ...

  9. 深入java并发Lock一

    java有像syncronized这种内置锁,但为什么还须要lock这种外置锁? 性能并非选择syncronized或者lock的原因,jdk6中syncronized的性能已经与lock相差不大. ...

  10. Linux SSH端口转发

    SSH端口转发分为两种,一种是本地端口转发,又称为本地SSH隧道.一直是远程端口转发.SSH端口转发,还必须指定数据传送的目标主机,从而形成点对点的端口转发. 本地端口转发     假定有三台主机A. ...