uva-442 Matrix Chain Multiplication
Suppose you have to evaluate an expression like A*B*C*D*E where A,B,C,D and E are matrices. Since matrix multiplication is associative, the order in which multiplications are performed is arbitrary. However, the number of elementary multiplications needed strongly depends on the evaluation order you choose.
For example, let A be a 50*10 matrix, B a 10*20 matrix and C a 20*5 matrix. There are two different strategies to compute A*B*C, namely (A*B)*C and A*(B*C).
The first one takes 15000 elementary multiplications, but the second one only 3500.
Your job is to write a program that determines the number of elementary multiplications needed for a given evaluation strategy.
Input Specification
Input consists of two parts: a list of matrices and a list of expressions.
The first line of the input file contains one integer n (
), representing the number of matrices in the first part. The next n lines each contain one capital letter, specifying the name of the matrix, and two integers, specifying the number of rows and columns of the matrix.
The second part of the input file strictly adheres to the following syntax (given in EBNF):
SecondPart = Line { Line } <EOF>
Line = Expression <CR>
Expression = Matrix | "(" Expression Expression ")"
Matrix = "A" | "B" | "C" | ... | "X" | "Y" | "Z"
Output Specification
For each expression found in the second part of the input file, print one line containing the word "error" if evaluation of the expression leads to an error due to non-matching matrices. Otherwise print one line containing the number of elementary multiplications needed to evaluate the expression in the way specified by the parentheses.
Sample Input
9
A 50 10
B 10 20
C 20 5
D 30 35
E 35 15
F 15 5
G 5 10
H 10 20
I 20 25
A
B
C
(AA)
(AB)
(AC)
(A(BC))
((AB)C)
(((((DE)F)G)H)I)
(D(E(F(G(HI)))))
((D(EF))((GH)I))
Sample Output
0
0
0
error
10000
error
3500
15000
40500
47500
15125
题目意思:给出字符代表矩阵的定义,计算表达示中矩阵相乘的总次数;
解题思路:定义一个stack<node>st,用node(-1,-1)代表左括号,从左到右扫描,如果是左括号则st.push(node(-1,01));如果是字母则push字母对应的矩阵;如果是右括号则把矩阵pop出来计算,一直到左括号;
#include <iostream>
#include<deque>
#include<algorithm>
#include<cstdio>
#include<stack>
#include<string>
#include<vector>
#include<map>
using namespace std; //bool check (vector<string>&v,map<string,int>&m)
//{
// for(unsigned int i=1;i<v.size();i++)
// if(m[v[i]]-m[v[i-1]]!=1)
// return false;
// return true;
//}
//int main()
//{
// int cas;
// cin>>cas;
// getchar();
// while(cas--)
// {
// int n;
// cin>>n;
// getchar();
// vector<string>v;
// string s;
// map<string ,int>m;
// for(int i=0; i<n; i++)
// {
// getline(cin,s);
// v.push_back(s);
// }
// for(int i=0; i<n; i++)
// {
// getline(cin,s);
// m[s]=i;
// }
// for(int q=0; q<n-1;)
// {
// //if(check(v,m))break;
// bool flag=1;
// for(int i=q+1; i<n; i++)
// {
// if(m[v[q]]-m[v[i]]==1)
// {
// cout<<v[i]<<endl;
// string t=v[i];
// for(int j=i; j>0; j--)
// v[j]=v[j-1];
// v[0]=t;
// flag=0;
// q=0;
// break;
// }
// }
// if(flag)q++;
// }
// cout<<endl;
// }
// return 0;
//} struct node
{
int x,y;
node(int a=0,int b=0):x(a),y(b) {}
};
int main()
{
int n;
cin>>n;
char c;
int x,y;
node arr[200];
for(int i=0; i<n; i++)
cin>>c>>x>>y,arr[c]=node(x,y);
string exp;
while(cin>>exp)
{
stack<node>st;
int sum=0;
bool flag=0;
for(int i=0; i<exp.size(); i++)
{
if(exp[i]!=')')
{
if(exp[i]=='(')
st.push(node(-1,-1));
else
st.push(arr[exp[i]]);
}
else if(!st.empty())
{
node matrix1=st.top();
st.pop();
while(st.top().x!=-1)
{
node matrix2=st.top();
st.pop();
if(matrix1.x!=matrix2.y)
{
flag=1;
cout<<"error"<<endl;
i=exp.size();
break;
}
sum+=matrix2.x*matrix2.y*matrix1.y;
matrix1=node(matrix2.x,matrix1.y);
}
st.pop();
st.push(matrix1);
}
else
{
cout<<"error"<<endl;
flag=1;
}
}
while(st.size()!=1&&!flag)
{
node matrix2=st.top();
st.pop();
node matrix1=st.top();
st.pop();
if(matrix1.y!=matrix2.x)
{
cout<<"error"<<endl;
break;
}
st.push(node(matrix1.x,matrix2.y));
sum+=matrix1.x*matrix1.y*matrix2.y;
}
if(!flag)
cout<<sum<<endl;
}
return 0;
}
uva-442 Matrix Chain Multiplication的更多相关文章
- UVA——442 Matrix Chain Multiplication
442 Matrix Chain MultiplicationSuppose you have to evaluate an expression like A*B*C*D*E where A,B,C ...
- UVa 442 Matrix Chain Multiplication(矩阵链,模拟栈)
意甲冠军 由于矩阵乘法计算链表达的数量,需要的计算 后的电流等于行的矩阵的矩阵的列数 他们乘足够的人才 非法输出error 输入是严格合法的 即使仅仅有两个相乘也会用括号括起来 并且括号中 ...
- stack UVA 442 Matrix Chain Multiplication
题目传送门 题意:给出每个矩阵的行列,计算矩阵的表达式,如果错误输出error,否则输出答案 分析:表达式求值,stack 容器的应用:矩阵的表达式求值A 矩阵是a * b,B 矩阵是b * c,则A ...
- UVa 442 Matrix Chain Multiplication(栈的应用)
题目链接: https://cn.vjudge.net/problem/UVA-442 /* 问题 输入有括号表示优先级的矩阵链乘式子,计算该式进行的乘法次数之和 解题思路 栈的应用,直接忽视左括号, ...
- UVA - 442 Matrix Chain Multiplication(栈模拟水题+专治自闭)
题目: 给出一串表示矩阵相乘的字符串,问这字符串中的矩阵相乘中所有元素相乘的次数. 思路: 遍历字符串遇到字母将其表示的矩阵压入栈中,遇到‘)’就将栈中的两个矩阵弹出来,然后计算这两个矩阵的元素相乘的 ...
- 例题6-3 Matrix Chain Multiplication ,Uva 442
这个题思路没有任何问题,但还是做了近三个小时,其中2个多小时调试 得到的经验有以下几点: 一定学会调试,掌握输出中间量的技巧,加强gdb调试的学习 有时候代码不对,得到的结果却是对的(之后总结以下常见 ...
- UVA 442 二十 Matrix Chain Multiplication
Matrix Chain Multiplication Time Limit:3000MS Memory Limit:0KB 64bit IO Format:%lld & %l ...
- Matrix Chain Multiplication[HDU1082]
Matrix Chain Multiplication Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (J ...
- UVa442 Matrix Chain Multiplication
// UVa442 Matrix Chain Multiplication // 题意:输入n个矩阵的维度和一些矩阵链乘表达式,输出乘法的次数.假定A和m*n的,B是n*p的,那么AB是m*p的,乘法 ...
- Matrix Chain Multiplication(表达式求值用栈操作)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1082 Matrix Chain Multiplication Time Limit: 2000/100 ...
随机推荐
- hadoop源码下载地址
http://svn.apache.org/repos/asf/hadoop/common/branches/
- vs2008编译QT开源项目三国杀(五篇文章)
请参看 http://tieba.baidu.com/f?kz=1508964881 按照上面的网址教程,下载三国杀源码,swig工具,并下载最新的QT4.8.2 for vs2008.我本机已经安装 ...
- Activity组件的生命周期
一.Activiy组件的三个状态: 1.前台状态(active) : 在屏幕的最上层,页面获得焦点,可以响应用户的操作2.可视状态(paused) : 不能与用户交互,但是还存在于可视区域内,它依然存 ...
- python 内存泄露的诊断 - 独立思考 - ITeye技术网站
python 内存泄露的诊断 - 独立思考 - ITeye技术网站 python 内存泄露的诊断 博客分类: 编程语言: Python Python多线程Blog.net 对于一个用 python ...
- Extjs学习----------动态载入js文件(减轻浏览器的压力)
动态载入js文件能够减轻浏览器的压力,本例使用了Ext.window.Window组件,该组件的学习地址:http://blog.csdn.net/z1137730824/article/detail ...
- Caused by: java.lang.ClassNotFoundException: org.aopalliance.intercept.MethodInterceptor
org.springframework.beans.factory.parsing.BeanDefinitionParsingException: Configuration problem: Fai ...
- BZOJ 3218(a + b Problem-二分图套值域线段树)
出这题的人是怎么想出来的…… 言归正传,这题是二分图套值域线段树. 首先经过 @Vfleaking的神奇建图后,把图拆成二分图, 不妨利用有向图最小割的性质建图(以前我一直以为最小割和边的方向无关,可 ...
- Xcode免证书真机调试,解决cannot read entitlement data问题
本文是根据某个帖子写的(帖子链接在最后放出),但是在配置的过程中,遇到了一个纠结的问题,这个问题折腾了我N久,一直没搞明白到底是什么原因,问题如下: 按照原帖上写的每一步去做了,但是在最后编译的时候出 ...
- HDU4719-Oh My Holy FFF(DP线段树优化)
Oh My Holy FFF Time Limit: 5000/2500 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others) T ...
- A Game of Thrones(13) - Tyrion
The north went on forever. Tyrion Lannister knew the maps as well as anyone, but a fortnight on the ...