ufldl学习笔记与编程作业:Softmax Regression(softmax回归)

ufldl出了新教程。感觉比之前的好,从基础讲起。系统清晰,又有编程实践。

在deep learning高质量群里面听一些前辈说,不必深究其它机器学习的算法,能够直接来学dl。

于是近期就開始搞这个了。教程加上matlab编程,就是完美啊。

新教程的地址是:http://ufldl.stanford.edu/tutorial/

本节学习链接:http://ufldl.stanford.edu/tutorial/supervised/SoftmaxRegression/

softmax回归事实上是逻辑回归的扩展形式,

逻辑回归通经常使用作2类的分类器,

softmax则用作多类的分类器。

从数学形式来说,事实上逻辑回归就是softmax回归中k=2的情况。这点教程里也说了。

softmax的目标函数和參数的偏导数教程推导也非常清楚。

对于编程作业。因为对matlab实现不熟,跳了非常多坑。

弄了非常久,并且还仅仅是用for循环来实现的。

这次最终体会到了,for循环的性能之差了。迭代了200次。1个多小时。

也跟这个模型比前两个模型复杂有关。

先贴第一个版本号的代码吧。以后想出了向量化的编程再补上。

下面是softmax_regression.m的代码

function [f,g] = softmax_regression_vec(theta, X,y)
%
% Arguments:
% theta - A vector containing the parameter values to optimize.
% In minFunc, theta is reshaped to a long vector. So we need to
% resize it to an n-by-(num_classes-1) matrix.
% Recall that we assume theta(:,num_classes) = 0.
%
% X - The examples stored in a matrix.
% X(i,j) is the i'th coordinate of the j'th example.
% y - The label for each example. y(j) is the j'th example's label.
%
m=size(X,2);
n=size(X,1); %theta本来是矩阵,传參的时候,theta(:)这样进来的。是一个vector,仅仅有一列,如今我们得把她变为矩阵
% theta is a vector; need to reshape to n x num_classes.
theta=reshape(theta, n, []);
num_classes=size(theta,2)+1; % initialize objective value and gradient.
f = 0;
g = zeros(size(theta)); h = theta'*X;%h(k,i)第k个theta。第i个样本 麻痹还是得循环求啊
a = exp(h);
a = [a;ones(1,size(a,2))];%加行
b = sum(a,1); for i=1:m
for j=1:num_classes
if y(i)!=j
continue;
end
f+=log2(a(j,i)/b(i));
end
end
f=-f;%符号 flag=0;
for j=1:num_classes-1
for i=1:m
if (y(i)==j)
flag =1;
else
flag=0;
end
g(:,j)+=X(:,i)*(a(j,i)/b(i)-flag);
end
end
%
% TODO: Compute the softmax objective function and gradient using vectorized code.
% Store the objective function value in 'f', and the gradient in 'g'.
% Before returning g, make sure you form it back into a vector with g=g(:);
%
%%% YOUR CODE HERE %%% g=g(:); % make gradient a vector for minFunc

下面是执行结果:

旧教程http://deeplearning.stanford.edu/wiki/index.php/Exercise:Softmax_Regression

也有softmax的编程作业。里面也是识别手写体数字。

当中提到准确率的问题。

Our implementation achieved an accuracy of 92.6%.
If your model's accuracy is significantly less (less than 91%), check your code, ensure that you are using the trained weights, and that you are training your model on the full 60000 training images. Conversely, if your accuracy is too high (99-100%), ensure
that you have not accidentally trained your model on the test set as well.

也就是说,从准确率来说,我的代码还是能够的。

接下来就是想办法实现向量化编程,加高速度了。

假设您有什么好想法。记得分享一下哦!

本文作者:linger

本文链接:http://blog.csdn.net/lingerlanlan/article/details/38410123

版权声明:本文博客原创文章,博客,未经同意,不得转载。

ufldl学习笔记和编程作业:Softmax Regression(softmax回报)的更多相关文章

  1. ufldl学习笔记与编程作业:Softmax Regression(vectorization加速)

    ufldl学习笔记与编程作业:Softmax Regression(vectorization加速) ufldl出了新教程,感觉比之前的好.从基础讲起.系统清晰,又有编程实践. 在deep learn ...

  2. ufldl学习笔记与编程作业:Logistic Regression(逻辑回归)

    ufldl学习笔记与编程作业:Logistic Regression(逻辑回归) ufldl出了新教程,感觉比之前的好,从基础讲起.系统清晰,又有编程实践. 在deep learning高质量群里面听 ...

  3. ufldl学习笔记与编程作业:Linear Regression(线性回归)

    ufldl学习笔记与编程作业:Linear Regression(线性回归) ufldl出了新教程,感觉比之前的好.从基础讲起.系统清晰,又有编程实践. 在deep learning高质量群里面听一些 ...

  4. ufldl学习笔记与编程作业:Multi-Layer Neural Network(多层神经网络+识别手写体编程)

    ufldl学习笔记与编程作业:Multi-Layer Neural Network(多层神经网络+识别手写体编程) ufldl出了新教程,感觉比之前的好,从基础讲起,系统清晰,又有编程实践. 在dee ...

  5. ufldl学习笔记和编程作业:Feature Extraction Using Convolution,Pooling(卷积和汇集特征提取)

    ufldl学习笔记与编程作业:Feature Extraction Using Convolution,Pooling(卷积和池化抽取特征) ufldl出了新教程,感觉比之前的好,从基础讲起.系统清晰 ...

  6. Andrew Ng机器学习编程作业: Linear Regression

    编程作业有两个文件 1.machine-learning-live-scripts(此为脚本文件方便作业) 2.machine-learning-ex1(此为作业文件) 将这两个文件解压拖入matla ...

  7. UFLDL教程笔记及练习答案三(Softmax回归与自我学习***)

    :softmax回归 当p(y|x,theta)满足多项式分布,通过GLM对其进行建模就能得到htheta(x)关于theta的函数,将其称为softmax回归. 教程中已经给了cost及gradie ...

  8. Andrew Ng机器学习编程作业:Logistic Regression

    编程作业文件: machine-learning-ex2 1. Logistic Regression (逻辑回归) 有之前学生的数据,建立逻辑回归模型预测,根据两次考试结果预测一个学生是否有资格被大 ...

  9. 我的学习笔记_Windows_HOOK编程 2009-12-03 11:19

    一.什么是HOOK? "hook"这个单词的意思是"钩子","Windows Hook"是Windows消息处理机制的一个重要扩展,程序猿能 ...

随机推荐

  1. linux ifconfig命令使用详解

    Linux下网卡命名规律:eth0,eth1.第一块以太网卡,第二块.lo为环回接口,它的IP地址固定为127.0.0.1,掩码8位.它代表你的机器本身. 1.ifconfig是查看网卡的信息. if ...

  2. poj1639 Picnic Planning 最小度数限制生成树

    题意:若干个人开车要去park聚会,可是park能停的车是有限的,为k.所以这些人要通过先开车到其它人家中,停车,然后拼车去聚会.另外,车的容量是无限的,他们家停车位也是无限的. 求开车总行程最短. ...

  3. RealThinClient学习(一)

    服务端代码: unit RtcHttpServer; interface uses Windows, Messages, SysUtils, Variants, Classes, Graphics, ...

  4. 《转》python 网络编程

    原地址:http://blog.163.com/benben_long/blog/static/19945824320121225918434/ 网络客户端: 1. 理解socket: socket是 ...

  5. Win8下在Vmware11中安装使用苹果系统OS X 10.10

    原文:Win8下在Vmware11中安装使用苹果系统OS X 10.10   近来因为需要做 iOS 的项目,所以需要多花一些时间看看敲敲代码.因为自己手头上并没有 Mac(过年为了闲的时候能玩玩游戏 ...

  6. linux 查看某进程或程序的网卡流量(转)

    一.nethogs介绍 分享一个linux 下检测系统进程占用带宽情况的检查.来自github上的开源工具. 它不依赖内核中的模块.当我们的服务器网络异常时,可以通过运行nethogs程序来检测是那个 ...

  7. C++ STL中Map的相关排序操作:按Key排序和按Value排序 - 编程小径 - 博客频道 - CSDN.NET

    C++ STL中Map的相关排序操作:按Key排序和按Value排序 - 编程小径 - 博客频道 - CSDN.NET C++ STL中Map的相关排序操作:按Key排序和按Value排序 分类: C ...

  8. PV(访问量)、UV(独立访客)、IP(独立IP) (转)

    网站统计中的PV(访问量):UV(独立访客):IP(独立IP)的定义与区别今天使用了雅虎统计,看到里面就有这个,就说说,其实里面的uv大家可能觉得很新奇,但是和站长统计里的独立访客是一样的嘛.---- ...

  9. Anyterm - Introduction

    Anyterm - Introduction Anyterm

  10. PAT-B 1015. 德才论(同PAT 1062. Talent and Virtue)

    1. 在排序的过程中,注意边界的处理(小于.小于等于) 2. 对于B-level,这题是比較麻烦一些了. 源代码: #include <cstdio> #include <vecto ...