Description

某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:(
我们来简化一下这个游戏的规则
有n次点击要做,成功了就是o,失败了就是x,分数是按comb计算的,连续a个comb就有a*a分,comb就是极大的连续o。
比如ooxxxxooooxxx,分数就是2*2+4*4=4+16=20。
Sevenkplus闲的慌就看他打了一盘,有些地方跟运气无关要么是o要么是x,有些地方o或者x各有50%的可能性,用?号来表示。
比如oo?xx就是一个可能的输入。
那么WJMZBMR这场osu的期望得分是多少呢?
比如oo?xx的话,?是o的话就是oooxx => 9,是x的话就是ooxxx => 4
期望自然就是(4+9)/2 =6.5了

Input

第一行一个整数n,表示点击的个数
接下来一个字符串,每个字符都是ox?中的一个

Output

一行一个浮点数表示答案
四舍五入到小数点后4位
如果害怕精度跪建议用long double或者extended

Sample Input

4
????

Sample Output

4.1250

n<=300000

 
 
题解
  考虑每一位对期望的贡献,假设现在在处理第 i 位,第 i 位以前有 L 个连续的o,这个可以看做特殊情况。
  假设这一位是 o 那么 ∆i = (l + 1) ^ 2 - l ^ 2 = 2 * l + 1, 同时取期望 E(∆i) = 2 * E(l) + 1;
  假设这一位是 x 那么 ∆i = 0;
  假设这一位是 ? 那么 E(∆i) = p1 * X1 + p0 * X0 (其中,p1为这一位取一的概率,p0为取0的概率,X1为这一位取1的得分变化,X0同理),那么X0 = 0,所以 E(∆i) = p1 * X1,E(∆i) = 0.5 * (2 * E(l) + 1) = E(l) + 0.5。
  那么问题变为了如何求解期望长度。
  假设这一位是 o 那么 E(l) + 1;
  假设这一位是 x 那么 E(l) = 0;
  假设这一位是 ? 那么 E(l) = 0.5 * 0 + 0.5 * (E(l) + 1);
  
  O(n)进行处理即可。

 #include <bits/stdc++.h>
#define rep(i, a, b) for (int i = a; i <= b; i++)
#define drep(i, a, b) for (int i = a; i >= b; i--)
#define REP(i, a, b) for (int i = a; i < b; i++)
#define pb push_back
#define mp make_pair
#define clr(x) memset(x, 0, sizeof(x))
#define xx first
#define yy second
using namespace std;
typedef long long i64;
typedef pair<int, int> pii;
const int inf = ~0U >> ;
const i64 INF = ~0ULL >> ;
//*************************************** int main() {
int n;
scanf("%d\n", &n);
double l(), ans();
char ch;
while (n--) {
ch = getchar();
if (ch == 'o') ans += * l + , l++;
else if (ch == 'x') l = ;
else ans += l + 0.5, l = (l + ) / ;
}
printf("%.4lf", ans);
return ;
}

bzoj-3450 Easy概率DP 【数学期望】的更多相关文章

  1. bzoj 3566: [SHOI2014]概率充电器 数学期望+换根dp

    题意:给定一颗树,树上每个点通电概率为 $q[i]$%,每条边通电的概率为 $p[i]$%,求期望充入电的点的个数. 期望在任何时候都具有线性性,所以可以分别求每个点通电的概率(这种情况下期望=概率 ...

  2. bzoj1415 [Noi2005]聪聪和可可【概率dp 数学期望】

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1415 noip2016 D1T3,多么痛的领悟...看来要恶补一下与期望相关的东西了. 这是 ...

  3. CF 148D D. Bag of mice (概率DP||数学期望)

    The dragon and the princess are arguing about what to do on the New Year's Eve. The dragon suggests ...

  4. [poj2096] Collecting Bugs【概率dp 数学期望】

    传送门:http://poj.org/problem?id=2096 题面很长,大意就是说,有n种bug,s种系统,每一个bug只能属于n中bug中的一种,也只能属于s种系统中的一种.一天能找一个bu ...

  5. [hdu4089] Activation【概率dp 数学期望】

    传送门:http://acm.hdu.edu.cn/showproblem.php?pid=4089 本来可以一遍过的,结果mle了一发...注意要用滚动数组. 令f(i, j)表示队列剩余i个人,这 ...

  6. [poj3744] Scout YYF I【概率dp 数学期望】

    传送门:http://poj.org/problem?id=3744 令f(i)表示到i,安全的概率.则f(i) = f(i - 1) * p + f(i - 2) * (1 - p),若i位置有地雷 ...

  7. [hdu4035] Maze【概率dp 数学期望】

    传送门:http://acm.hdu.edu.cn/showproblem.php?pid=4035 真的是一道好题,题解比较麻烦,我自己在纸上写了好大一块草稿才搞出来,不用公式编辑器的话就很难看清楚 ...

  8. HDU3853-LOOPS(概率DP求期望)

    LOOPS Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 125536/65536 K (Java/Others) Total Su ...

  9. bzoj 3450 Tyvj1952 Easy (概率dp)

    3450: Tyvj1952 Easy Description 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:(我们来简化一下这个游戏的规则有n次点击要做,成功了就是o,失败 ...

  10. 【BZOJ】1076: [SCOI2008]奖励关(状压dp+数学期望)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1076 有时候人蠢还真是蠢.一开始我看不懂期望啊..白书上其实讲得很详细的,什么全概率,全期望(这个压 ...

随机推荐

  1. GameUnity 2.0 文档(四) 网格+四叉树 最优碰撞检测

    在写之前,必须对 前一篇文档补充一下. Camera2DAngle类是 摄像机旋转 2d人物360度,PlayerMove是人物移动. 这两个类 都可以 360 °  场景旋转人物也跟着旋转. 但不能 ...

  2. PAT1006

    At the beginning of every day, the first person who signs in the computer room will unlock the door, ...

  3. 浅谈ajax的优点与缺点

    AJAX (Asynchronous Javascript and XML) 是一种交互式动态web应用开发技术,该技术能提供富用户体验. 完全的AJAX应用给人以桌面应用的感觉.正如其他任何技术,A ...

  4. 集合问题 离线+并查集 HDU 3938

    题目大意:给你n个点,m条边,q个询问,每条边有一个val,每次询问也询问一个val,定义:这样条件的两个点(u,v),使得u->v的的价值就是所有的通路中的的最长的边最短.问满足这样的点对有几 ...

  5. 利用id来进行树状数组,而不是离散化以后的val HDU 4417 离线+树状数组

    题目大意:给你一个长度为n的数组,问[L,R]之间<=val的个数 思路:就像标题说的那样就行了.树状数组不一定是离散化以后的区间,而可以是id //看看会不会爆int!数组会不会少了一维! / ...

  6. zf-关于被发牌人没有显示环节的那个被发牌人的解决办法

    是存储过程里的字段没有插入进去,添加个presonName即可--修改的时候可以执行 dbo.dingshi_fapai 来进行存储 如果添加presonName 必须在临时表里加上这个字段,然后在进 ...

  7. 【简单dp】 poj 2346

    题意:给定一个N 求一共有多少个N位数     前N/2个数的和等于后N/2个数的和思路:令F[i][j] 为sum值为j的i位数的个数则问题转化成 求 sum(F[n/2][j] * F[n/2][ ...

  8. android脚步---如何看log之程序停止运行,和UI线程和非UI线程之间切换

    经常运行eclipse时,烧到手机出现,“停止运行”,这时候得通过logcat查log了.一般这种情况属于FATAL EXCEPTION,所以检索FATAL 或者 EXCEPTION,然后往下看几行 ...

  9. linux下安装tomcat和部署web应用

      孤傲苍狼 只为成功找方法,不为失败找借口! Linux下安装Tomcat服务器和部署Web应用 一.上传Tomcat服务器

  10. Total Highway Distance

    Total Highway Distance 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 Little Hi and Little Ho are playing a ...