集成学习---bagging and boosting
作为集成学习的二个方法,其实bagging和boosting的实现比较容易理解,但是理论证明比较费力。下面首先介绍这两种方法。
所谓的集成学习,就是用多重或多个弱分类器结合为一个强分类器,从而达到提升分类方法效果。严格来说,集成学习并不算是一种分类器,而是一种分类器结合的方法。
1.bagging
bagging算是很基础的集成学习的方法,他的提出是为了增强分类器效果,但是在处理不平衡问题上却有很好的效果。
如上图,原始数据集通过T次随机采样,得到T个与原始数据集相同大小的子数据集,分别训练得到T个弱分类器Classifier,然后结合为一个强分类器。
以下给出随机采样的概率解释及效果分析:
采用的是概率论里面的booststrap思想,由于小样本估计的不准确性,再加上现代计算性能的提升,可以用重复的计算提升小样本的精度。
原始小样本不能正确反映数据的真实分布,用T次随机采样拟合真实分布。
下式为L次分类得到的强分类器等于L次估计的期望:
下式为真实的y与每个弱分类器之间的差异,展开后得到右边:
下式表示,最后得到弱分类器的差异会大于统计平均得到的强分类器的差异,简而言之就是通过强分类,更好地拟合了。
上面得到的结果就是,如果原始数据为真实分布的前提下,用bagging集成分类器,始终是能提升效果的,提升的效果取决于分类器的稳定性,稳定性越差,提升的效果越高。如神经网络这样的不稳定分类器。
当然,上面假设是数据接近真实分布,然后在概率[1/N,1/N,.....1/N]下重采样。
如果训练数据不是真实分布,那么bagging的效果也可能比非bagging更差。
接下来是如何把L个弱分类器集成为强分类器:
最简单的方法就是投票法(vote)。对于一个测试样本,通过L个弱分类器得到L个类别信息,这些信息投票产生最后的类别。如L=10,分类结果分别为:[3,3,3,3,5,5,6,7,1,8.]
那么这个样本就属于3.
2.boosting
类似于bagging集成学习,boosting也是通过重采样得到多个弱分类器,最后得到一个强分类器。区别是boosting是基于权值的弱分类器集成。
上面为boosting的流程图,简要概括如下:
1.e表示某个弱分类器的错误分类率,计算用来作为这个分类器的可信度权值a,以及更新样本权值D。
2.D表示原始数据的权值矩阵。刚开始每个样本的采样概率都一样,为1/m。在某个弱分类器分类时,分类错误或对,则D就会根据e相应地增加或减少,使分类器更多的关注上次错分的样本。
3.α为弱分类器的可信度,bagging中隐含的α为1,boosting中,根据每个弱分类器的表现(e较低),决定这个分类器的结果在总的结果中所占的权重,分类准的自然占较多的权重。
最后根据可信度α,以及各个弱分类器的估计h(x),得到最后的结果。
如上图为boosting的流程图,主要为两个部分,更新样本权值D和计算分类器权重α,前者使得原来分错的样本再下一个分类器中能够更可能分类正确;后者根据分类器的表现,赋予不同弱分类器不同权值,最后得到一个加权的强分类器。
boosting概率上的效果证明这里略去,只引出一个结论,不断地迭代更新能使得最终的结果无限接近最优分类,不过boosting会倾向于一直分错的样本,如果样本中有离群的错误样本,boosting就会出现效果不好的情况。
总结上面讨论了两个集成学习的方法,bagging和boosting,boosting有点像bagging的改进版本,加入了权值采样和权重强分类的概念。都是通过重采样和弱分类器融合实现的方法。
集成学习---bagging and boosting的更多相关文章
- 机器学习基础—集成学习Bagging 和 Boosting
集成学习 就是不断的通过数据子集形成新的规则,然后将这些规则合并.bagging和boosting都属于集成学习.集成学习的核心思想是通过训练形成多个分类器,然后将这些分类器进行组合. 所以归结为(1 ...
- [机器学习]集成学习--bagging、boosting、stacking
集成学习简介 集成学习(ensemble learning)通过构建并结合多个学习器来完成学习任务. 如何产生"好而不同"的个体学习器,是集成学习研究的核心. 集成学习的思路是通过 ...
- 机器学习——集成学习(Bagging、Boosting、Stacking)
1 前言 集成学习的思想是将若干个学习器(分类器&回归器)组合之后产生一个新学习器.弱分类器(weak learner)指那些分类准确率只稍微好于随机猜测的分类器(errorrate < ...
- 集成学习算法汇总----Boosting和Bagging(推荐AAA)
sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...
- 集成学习算法总结----Boosting和Bagging
1.集成学习概述 1.1 集成学习概述 集成学习在机器学习算法中具有较高的准去率,不足之处就是模型的训练过程可能比较复杂,效率不是很高.目前接触较多的集成学习主要有2种:基于Boosting的和基于B ...
- 集成学习算法总结----Boosting和Bagging(转)
1.集成学习概述 1.1 集成学习概述 集成学习在机器学习算法中具有较高的准去率,不足之处就是模型的训练过程可能比较复杂,效率不是很高.目前接触较多的集成学习主要有2种:基于Boosting的和基于B ...
- [Mechine Learning & Algorithm] 集成学习方法——Bagging和 Boosting
使用机器学习方法解决问题时,有较多模型可供选择. 一般的思路是先根据数据的特点,快速尝试某种模型,选定某种模型后, 再进行模型参数的选择(当然时间允许的话,可以对模型和参数进行双向选择) 因为不同的模 ...
- 【Supervised Learning】 集成学习Ensemble Learning & Boosting 算法(python实现)
零. Introduction 1.learn over a subset of data choose the subset uniformally randomly (均匀随机地选择子集) app ...
- 机器学习:集成学习(Ada Boosting 和 Gradient Boosting)
一.集成学习的思路 共 3 种思路: Bagging:独立的集成多个模型,每个模型有一定的差异,最终综合有差异的模型的结果,获得学习的最终的结果: Boosting(增强集成学习):集成多个模型,每个 ...
随机推荐
- Swift - 启动时的向导页(新手引导)的制作
在很多iOS产品或者一些应用版本的升级中,新手指导都是一个常用的功能,通过说明页的左右滑动,可以很清晰的展示系统的一些功能特性.制作思路如下: 1,如何检测应用是第一次登陆启动 我们可以使用NSUse ...
- oracle系统包——dbms_random用法及order by 小结(转)
dbms_random是一个可以生成随机数值或者字符串的程序包. 这个包有initialize().seed().terminate().value().normal().random().strin ...
- fake it till you become it
fake it till you become it_你泛起山川烟波里的不是我._百度空间 fake it till you become it
- Swift - 开关按钮(UISwitch)的用法
下面演示如何创建开关,以及监听它值的改变,代码如下: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 class ViewController: UIV ...
- MySQL中同一时候存在创建和上次更新时间戳字段解决方法浅析
在写这篇文章之前.明白我的MySQL版本号. mysql> SELECT VERSION(); +------------+ | VERSION() | +------------+ | 5.5 ...
- MyBATIS使用CRUD
MyEclipse不提供自己主动生成,这里提供mybatis文件包和开发文档 http://download.csdn.net/detail/u010026901/7489319 自己建立配置文件, ...
- PHP中抽象类与接口的应用场景
<?php /*** ====笔记部分==== 接口的具体语法: 0:以人类为, class Human 是人的草图 而接口 是零件 可以用多种零件组合出一种新特种来. 1: 如上,接口本身即是 ...
- 更好的自动ssh登录
更好的自动ssh登录 解决~/.ssh/known_hosts 过期问题. bash + expect bash:ssh.sh #!/bin/bash help(){ echo "usage ...
- 使用国内源解决Qt在线更新慢的问题
Qt在线安装更新工具默认使用官方的源,国内访问比较慢,可以在setting中增加国内的源来提高更新速度,如下面的源: http://mirrors.ustc.edu.cn/qtproject/onli ...
- Java读取本地文件,并显示在JSP文件中
当我们初学IMG标签时,我们知道通过设置img标签的src属性,能够在页面中显示想要展示的图片.其中src的值,可以是磁盘目录上的绝对,也可以是项目下的相对路径,还可以是网络上的图片路径.在存 ...