Shortest Path

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 1494    Accepted Submission(s): 476

Problem Description
There is a path graph G=(V,E) with n vertices. Vertices are numbered from 1 to n and there is an edge with unit length between i and i+1 (1≤i<n). To make the graph more interesting, someone adds three more edges to the graph. The length of each new edge is 1.

You are given the graph and several queries about the shortest path between some pairs of vertices.

 
Input
There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:

The first line contains two integer n and m (1≤n,m≤105) -- the number of vertices and the number of queries. The next line contains 6 integers a1,b1,a2,b2,a3,b3 (1≤a1,a2,a3,b1,b2,b3≤n), separated by a space, denoting the new added three edges are (a1,b1), (a2,b2), (a3,b3).

In the next m lines, each contains two integers si and ti (1≤si,ti≤n), denoting a query.

The sum of values of m in all test cases doesn't exceed 106.

 
Output
For each test cases, output an integer S=(∑i=1mi⋅zi) mod (109+7), where zi is the answer for i-th query.
 
Sample Input
1
10 2
2 4 5 7 8 10
1 5
3 1
 
Sample Output
7
 
Source
 
Recommend
wange2014   |   We have carefully selected several similar problems for you:  5659 5658 5657 5655 5654 
 最近在学习最短路问题,floyd写法。
void floyd(){
    for(int k = 1; k<=6; k++)
        for(int i = 1; i<=6; i++)
            for(int j = 1; j<=6; j++)
                d[i][j] = min(d[i][j],d[i][k]+d[k][j]);
}
 #include <iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int maxn = ;
const int INF = 0x3f3f3f3f;
const int mod = 1e9+;
int d[][];
int a[];
void floyd(){
for(int k = ; k<=; k++)
for(int i = ; i<=; i++)
for(int j = ; j<=; j++)
d[i][j] = min(d[i][j],d[i][k]+d[k][j]);
}
void solve(){
int t,n,m;
scanf("%d",&t);
while(t--){
scanf("%d%d",&n,&m);
for(int i = ; i<=; i++) scanf("%d",&a[i]);
for(int i = ; i<=; i++){
for(int j = ; j<=; j++){
d[i][j] = abs(a[i] - a[j]);
}
}
for(int i = ; i<=; i+=) d[i][i+] = d[i+][i] = ;
floyd();
long long sum = ; for(int k = ; k<=m; k++){
int x,y;
scanf("%d%d",&x,&y);
int ans = abs(x-y);
for(int i = ; i<=; i++)
for(int j = ; j<=; j++)
ans = min(ans,(abs(x-a[i])+d[i][j]+abs(y-a[j])));
sum = (sum + (long long)ans*k%mod)%mod;
}
printf("%I64d\n",sum);
}
}
int main()
{
solve();
return ;
}

卷珠帘

Shortest Path的更多相关文章

  1. hdu-----(2807)The Shortest Path(矩阵+Floyd)

    The Shortest Path Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  2. zoj 2760 How Many Shortest Path 最大流

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1760 Given a weighted directed graph ...

  3. The Shortest Path in Nya Graph

    Problem Description This is a very easy problem, your task is just calculate el camino mas corto en ...

  4. hdu 3631 Shortest Path(Floyd)

    题目链接:pid=3631" style="font-size:18px">http://acm.hdu.edu.cn/showproblem.php?pid=36 ...

  5. Shortest Path(思维,dfs)

    Shortest Path  Accepts: 40  Submissions: 610  Time Limit: 4000/2000 MS (Java/Others)  Memory Limit: ...

  6. (中等) HDU 4725 The Shortest Path in Nya Graph,Dijkstra+加点。

    Description This is a very easy problem, your task is just calculate el camino mas corto en un grafi ...

  7. 【ZOJ2760】How Many Shortest Path

    How Many Shortest Path 标签: 网络流 描述 Given a weighted directed graph, we define the shortest path as th ...

  8. [Swift]LeetCode847. 访问所有节点的最短路径 | Shortest Path Visiting All Nodes

    An undirected, connected graph of N nodes (labeled 0, 1, 2, ..., N-1) is given as graph. graph.lengt ...

  9. OSPF(Open Shortest Path First)

    1.概述 路由协议OSPF全称为Open Shortest Path First,也就开放的最短路径优先协议,因为OSPF是由IETF开发的,所以所有厂商都可以用. OSPF的流量使用IP协议号. O ...

随机推荐

  1. CCF考试真题题解

    CCF考试认证:题解参考博客http://blog.csdn.net/u014578266/article/details/45221841 问题描述 试题编号: - 试题名称: 图像旋转 时间限制: ...

  2. Html wmode 标签参数详解

    原文出处:http://blog.sina.com.cn/s/blog_4532d8b50101g2sw.html 在网页中嵌入swf文件时,经常会用到wmode这个参数,而嵌入的swf出现的一些问题 ...

  3. svg笔记----------path篇

    每个路径都必须以moveto 命令开始 moveto.lineto和closepath <path d="M 10 10 L 100 10z"/> 大写字母命令的坐标是 ...

  4. PHP扩展开发-简单类扩展

    今天来学习简单类扩展开发 实现目标为如下php的类 <?php class classext(){ private $username; CONST URL="http://www.g ...

  5. DataSet与DataReader的比较

    DataSet与DataReader的比较 DataSet DataReader 读或写数据 只读 包含多个来自不同数据库的表 使用 SQL 语句从单个数据库 非连接模式 连接模式 绑定到多个控件 只 ...

  6. vs当前不会命中断点,还没有为该文档加载任何符号

    今天发布网站之后,附加进程却怎么页不能命中断点,后来发现原来,我将发布的web.config文件覆盖掉了新生成的配置文件,其中一项:<compilation debug="false& ...

  7. Windows下搭建PHP开发环境【总结】

    一.准备工作-下载所需软件 Apache 进入apache服务器官网http://httpd.apache.org/ ,下面是下载的教程:http://jingyan.baidu.com/articl ...

  8. 巧妙利用ToArray()函数移除集合中的元素

    当我们对集合foreach遍历时,不能直接移除遍历的集合的元素,解决的方法有很多种,见我之前的随笔: http://www.cnblogs.com/527289276qq/p/4331000.html ...

  9. http & json

    TCP(传输层协议) (1) 面向连接  (2) 可靠的  (3) 基于字节流的   连接建立阶段: 客户端 ------->SYN                 服务端(服务器被动打开) 客 ...

  10. IO流---字符流(FileWriter, FileReader ,BufferedWriter,BufferedReader)

    IO   Input  Output IO流用来处理设备之间的数据传输. java对数据的操作是通过流来实现的. 流按流向分:输入流,输出流     是相对内存而言的.把硬盘的数据读取到内存中就是输入 ...