Shortest Path

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 1494    Accepted Submission(s): 476

Problem Description
There is a path graph G=(V,E) with n vertices. Vertices are numbered from 1 to n and there is an edge with unit length between i and i+1 (1≤i<n). To make the graph more interesting, someone adds three more edges to the graph. The length of each new edge is 1.

You are given the graph and several queries about the shortest path between some pairs of vertices.

 
Input
There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:

The first line contains two integer n and m (1≤n,m≤105) -- the number of vertices and the number of queries. The next line contains 6 integers a1,b1,a2,b2,a3,b3 (1≤a1,a2,a3,b1,b2,b3≤n), separated by a space, denoting the new added three edges are (a1,b1), (a2,b2), (a3,b3).

In the next m lines, each contains two integers si and ti (1≤si,ti≤n), denoting a query.

The sum of values of m in all test cases doesn't exceed 106.

 
Output
For each test cases, output an integer S=(∑i=1mi⋅zi) mod (109+7), where zi is the answer for i-th query.
 
Sample Input
1
10 2
2 4 5 7 8 10
1 5
3 1
 
Sample Output
7
 
Source
 
Recommend
wange2014   |   We have carefully selected several similar problems for you:  5659 5658 5657 5655 5654 
 最近在学习最短路问题,floyd写法。
void floyd(){
    for(int k = 1; k<=6; k++)
        for(int i = 1; i<=6; i++)
            for(int j = 1; j<=6; j++)
                d[i][j] = min(d[i][j],d[i][k]+d[k][j]);
}
 #include <iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int maxn = ;
const int INF = 0x3f3f3f3f;
const int mod = 1e9+;
int d[][];
int a[];
void floyd(){
for(int k = ; k<=; k++)
for(int i = ; i<=; i++)
for(int j = ; j<=; j++)
d[i][j] = min(d[i][j],d[i][k]+d[k][j]);
}
void solve(){
int t,n,m;
scanf("%d",&t);
while(t--){
scanf("%d%d",&n,&m);
for(int i = ; i<=; i++) scanf("%d",&a[i]);
for(int i = ; i<=; i++){
for(int j = ; j<=; j++){
d[i][j] = abs(a[i] - a[j]);
}
}
for(int i = ; i<=; i+=) d[i][i+] = d[i+][i] = ;
floyd();
long long sum = ; for(int k = ; k<=m; k++){
int x,y;
scanf("%d%d",&x,&y);
int ans = abs(x-y);
for(int i = ; i<=; i++)
for(int j = ; j<=; j++)
ans = min(ans,(abs(x-a[i])+d[i][j]+abs(y-a[j])));
sum = (sum + (long long)ans*k%mod)%mod;
}
printf("%I64d\n",sum);
}
}
int main()
{
solve();
return ;
}

卷珠帘

Shortest Path的更多相关文章

  1. hdu-----(2807)The Shortest Path(矩阵+Floyd)

    The Shortest Path Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  2. zoj 2760 How Many Shortest Path 最大流

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1760 Given a weighted directed graph ...

  3. The Shortest Path in Nya Graph

    Problem Description This is a very easy problem, your task is just calculate el camino mas corto en ...

  4. hdu 3631 Shortest Path(Floyd)

    题目链接:pid=3631" style="font-size:18px">http://acm.hdu.edu.cn/showproblem.php?pid=36 ...

  5. Shortest Path(思维,dfs)

    Shortest Path  Accepts: 40  Submissions: 610  Time Limit: 4000/2000 MS (Java/Others)  Memory Limit: ...

  6. (中等) HDU 4725 The Shortest Path in Nya Graph,Dijkstra+加点。

    Description This is a very easy problem, your task is just calculate el camino mas corto en un grafi ...

  7. 【ZOJ2760】How Many Shortest Path

    How Many Shortest Path 标签: 网络流 描述 Given a weighted directed graph, we define the shortest path as th ...

  8. [Swift]LeetCode847. 访问所有节点的最短路径 | Shortest Path Visiting All Nodes

    An undirected, connected graph of N nodes (labeled 0, 1, 2, ..., N-1) is given as graph. graph.lengt ...

  9. OSPF(Open Shortest Path First)

    1.概述 路由协议OSPF全称为Open Shortest Path First,也就开放的最短路径优先协议,因为OSPF是由IETF开发的,所以所有厂商都可以用. OSPF的流量使用IP协议号. O ...

随机推荐

  1. view视图--display中echo出ob_get_contents的缓冲内容--(实现,拼接好文件--导入文件)

    view.php01默认设置有3个公共的属性,其他属性.后面实例化的时候.通过传递参数.foreach遍历,不断的增加属性02view对象的实例化.位置在-->控制器父类的构造方法中视图的目录名 ...

  2. nginx配置错误

    重启nginx:sudo /usr/local/nginx/sbin/nginx -s reload 出现错误提示:nginx: [emerg] unknown directive "if& ...

  3. Nmap的使用【转载】

    1.NMap工具 主要功能:探测主机是否在线.扫描主机开放端口和嗅探网络服务,用于网络探测和安全扫描. NMap支持很多扫描技术,例如:UDP.TCPconnect().TCPSYN(半开扫描).ft ...

  4. 命名空间“Microsoft”中不存在类型或命名空间名称“Office”(是缺少程序集引用吗?)

    通过引用这个解决,不同的的office版本,中间的版本号可能不同,如图所示:

  5. sql数据库删除表的外键约束(INSERT 语句与 FOREIGN KEY 约束"XXX"冲突。该冲突发生于数据库"XXX",表"XXX", column 'XXX)

    使用如下SQL语句查询出表中外键约束名称: 1 select name 2 from sys.foreign_key_columns f join sys.objects o on f.constra ...

  6. 百度地图API地点搜索-获取经纬度

    分享一下地图上的地点搜索和鼠标点击获取地点经纬度,这些都是地图比较基本和实用的代码,其中还包括了根据用户IP进行地图的显示.改变地图上的鼠标样式.启用滚轮缩放等,算是半入门吧,其他的一些可以自己参考百 ...

  7. php 四种基础算法 ---- 快速排序法

    4.快速排序法 代码: function quick_sort($arr) {    //先判断是否需要继续进行    $length = count($arr);    if($length < ...

  8. if __name__ == '__main__'在python中的应用

    当你打开一个.py文件时,经常会在代码的最下面看到if __name__ == '__main__':,现在就来介 绍一下它的作用. 模块是对象,并且所有的模块都有一个内置属性 __name__.一个 ...

  9. ntp-keygen.c

    这个程序产生加密数据文件使用的的密码,遵循Autokey security protocol和NTPv4.文件名被名字和创建时间组成的头部当做前缀,后面跟有一个类型定义的描述符标签和PEM加密的数据结 ...

  10. USB鼠标线序

    鼠标线断了,找了个废弃的手机充电线接上,特记录线序如下: 红————白          白————橙绿————绿黑————蓝