Shortest Path

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 1494    Accepted Submission(s): 476

Problem Description
There is a path graph G=(V,E) with n vertices. Vertices are numbered from 1 to n and there is an edge with unit length between i and i+1 (1≤i<n). To make the graph more interesting, someone adds three more edges to the graph. The length of each new edge is 1.

You are given the graph and several queries about the shortest path between some pairs of vertices.

 
Input
There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:

The first line contains two integer n and m (1≤n,m≤105) -- the number of vertices and the number of queries. The next line contains 6 integers a1,b1,a2,b2,a3,b3 (1≤a1,a2,a3,b1,b2,b3≤n), separated by a space, denoting the new added three edges are (a1,b1), (a2,b2), (a3,b3).

In the next m lines, each contains two integers si and ti (1≤si,ti≤n), denoting a query.

The sum of values of m in all test cases doesn't exceed 106.

 
Output
For each test cases, output an integer S=(∑i=1mi⋅zi) mod (109+7), where zi is the answer for i-th query.
 
Sample Input
1
10 2
2 4 5 7 8 10
1 5
3 1
 
Sample Output
7
 
Source
 
Recommend
wange2014   |   We have carefully selected several similar problems for you:  5659 5658 5657 5655 5654 
 最近在学习最短路问题,floyd写法。
void floyd(){
    for(int k = 1; k<=6; k++)
        for(int i = 1; i<=6; i++)
            for(int j = 1; j<=6; j++)
                d[i][j] = min(d[i][j],d[i][k]+d[k][j]);
}
 #include <iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int maxn = ;
const int INF = 0x3f3f3f3f;
const int mod = 1e9+;
int d[][];
int a[];
void floyd(){
for(int k = ; k<=; k++)
for(int i = ; i<=; i++)
for(int j = ; j<=; j++)
d[i][j] = min(d[i][j],d[i][k]+d[k][j]);
}
void solve(){
int t,n,m;
scanf("%d",&t);
while(t--){
scanf("%d%d",&n,&m);
for(int i = ; i<=; i++) scanf("%d",&a[i]);
for(int i = ; i<=; i++){
for(int j = ; j<=; j++){
d[i][j] = abs(a[i] - a[j]);
}
}
for(int i = ; i<=; i+=) d[i][i+] = d[i+][i] = ;
floyd();
long long sum = ; for(int k = ; k<=m; k++){
int x,y;
scanf("%d%d",&x,&y);
int ans = abs(x-y);
for(int i = ; i<=; i++)
for(int j = ; j<=; j++)
ans = min(ans,(abs(x-a[i])+d[i][j]+abs(y-a[j])));
sum = (sum + (long long)ans*k%mod)%mod;
}
printf("%I64d\n",sum);
}
}
int main()
{
solve();
return ;
}

卷珠帘

Shortest Path的更多相关文章

  1. hdu-----(2807)The Shortest Path(矩阵+Floyd)

    The Shortest Path Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  2. zoj 2760 How Many Shortest Path 最大流

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1760 Given a weighted directed graph ...

  3. The Shortest Path in Nya Graph

    Problem Description This is a very easy problem, your task is just calculate el camino mas corto en ...

  4. hdu 3631 Shortest Path(Floyd)

    题目链接:pid=3631" style="font-size:18px">http://acm.hdu.edu.cn/showproblem.php?pid=36 ...

  5. Shortest Path(思维,dfs)

    Shortest Path  Accepts: 40  Submissions: 610  Time Limit: 4000/2000 MS (Java/Others)  Memory Limit: ...

  6. (中等) HDU 4725 The Shortest Path in Nya Graph,Dijkstra+加点。

    Description This is a very easy problem, your task is just calculate el camino mas corto en un grafi ...

  7. 【ZOJ2760】How Many Shortest Path

    How Many Shortest Path 标签: 网络流 描述 Given a weighted directed graph, we define the shortest path as th ...

  8. [Swift]LeetCode847. 访问所有节点的最短路径 | Shortest Path Visiting All Nodes

    An undirected, connected graph of N nodes (labeled 0, 1, 2, ..., N-1) is given as graph. graph.lengt ...

  9. OSPF(Open Shortest Path First)

    1.概述 路由协议OSPF全称为Open Shortest Path First,也就开放的最短路径优先协议,因为OSPF是由IETF开发的,所以所有厂商都可以用. OSPF的流量使用IP协议号. O ...

随机推荐

  1. debia下安装libjpeg

    今天在编译时遇到如下问题: configure: error: no usable libjpeg; please install libjpeg devel package or equivalen ...

  2. swf version 与flash player 对应关系

    2013-04-16更新:更新Flash Player 11.7/AIR 3.7正式版. 详细链接FlashPlayer 11.7详情 2013-03-10更新:更新Flash Player 11.6 ...

  3. VS2005--设置Release模式下调试

    今天初略看了下,所谓Release和Debug只是大家和编译器约定的一些生成规则而已,所以调试是无所谓Release和Debug的,只是由于生成的规则不同,可能Release的一些调试结果没Debug ...

  4. mysql innobackupex备份工具

    先简单介绍一下这个工具:innobackupexinnobackupex比xtarbackup有更强的功能,它整合了xtrabackup和其他的一些功能,他不但可以全量备份/恢复,还可以基于时间的增量 ...

  5. 转 awk 使用方法

    Shell编程-awk 简介 awk 是一种对立的编程语言,集成于所有UNIX/Linux中,这个名字是它创建者的名字首字母组成的 Alfred Aho,Peter Weinberger, and B ...

  6. iOS真机测试中出现dyld`dyld_fatal_error错误

    最近进入一家新公司,接手了一个之前由外包公司承接的项目.首先吐槽一下项目质量,哎毕竟也憋了很久了. 1.上手项目是打不开的,所有framework静态库全体飘红,一编译七八十错误.最终是偷懒还是什么就 ...

  7. Android OpenGL ES(五)GLSurfaceView .

    Android OpenGL ES 相关的包主要定义在 javax.microedition.khronos.opengles    GL 绘图指令 javax.microedition.khrono ...

  8. OpenGL----绘制立方体,定点数组与顶点缓冲

    ,立方体是很简单,但是这里只是拿立方体做一个例子,来说明OpenGL在绘制方法上的改进.从原始一点的办法开始一个立方体有六个面,每个面是一个正方形,好,绘制六个正方形就可以了. glBegin(GL_ ...

  9. ReactiveCocoa / RxSwift 笔记一

    原创:转载请注明出处 ReactiveCocoa / RxSwift Native app有很大一部分的时间是在等待事件发生,然后响应事件,比如 1.等待网络请求完成, 2.等待用户的操作, 3.等待 ...

  10. Swift中的闭包(Closure) 浅析

    转载自:http://www.devtalking.com/articles/closure-expressions-in-swift/ 闭包在Swift中非常有用.通俗的解释就是一个Int类型里存储 ...