//刚開始乱搞。
//网络流求解,假设最大流=全部元素的和则有解;利用残留网络推断是否唯一,
//方法有两种,第一种是深搜看看是否存在正边权的环。见上一篇4888
//至少四个点构成的环,另外一种是用矩阵dp,仅仅须要满足某行的i列元素<9,j列元素>0,而还有一行的i列元素>0,j列元素<9,
//能够满足互补就证明不唯一。这个绘图不难看出
#include<stdio.h>
#include<string.h>
#include<queue>
using namespace std;
#define inf 0x3fffffff
#define N 1100
struct node {
int u,v,w,next;
}bian[N*N*4];
int head[N],yong,dis[N],work[N];
void init(){
yong=0;
memset(head,-1,sizeof(head));
}
void addbian(int u,int v,int w) {
bian[yong].u=u;
bian[yong].v=v;
bian[yong].w=w;
bian[yong].next=head[u];
head[u]=yong++;
}
void add(int u,int v,int w) {
addbian(u,v,w);
addbian(v,u,0);
}
int min(int a,int b)
{
return a<b?a:b;
}
int bfs(int s,int t)
{
memset(dis,-1,sizeof(dis));
queue<int>q;
q.push(s);
dis[s]=0;
while(!q.empty())
{
int u=q.front();
q.pop();
for(int i=head[u];i!=-1;i=bian[i].next)
{
int v=bian[i].v;
if(bian[i].w&&dis[v]==-1)
{
dis[v]=dis[u]+1;
q.push(v);
if(v==t)
return 1;
}
}
}
return 0;
}
int dfs(int s,int limit,int t)
{
if(s==t)return limit;
for(int &i=work[s];i!=-1;i=bian[i].next)
{
int v=bian[i].v;
if(bian[i].w&&dis[v]==dis[s]+1)
{
int tt=dfs(v,min(limit,bian[i].w),t);
if(tt)
{
bian[i].w-=tt;
bian[i^1].w+=tt;
return tt;
}
}
}
return 0;
}
int dinic(int s,int t)
{
int ans=0;
while(bfs(s,t))
{
memcpy(work,head,sizeof(head));
while(int tt=dfs(s,inf,t))
ans+=tt;
}
return ans;
}
int f[N],ff[N],dp[N][N],ma[N][N];
int judge(int n,int m) {
int i,j,k;
memset(dp,0,sizeof(dp));
for(i=1;i<=n;i++)
for(j=head[i];j!=-1;j=bian[j].next ){
int v=bian[j].v;
if(v>n&&v<=n+m)
ma[i][v-n]=bian[j^1].w;
}
for(i=1;i<=n;i++) {
if(f[i]==0||f[i]==9*m)continue;
for(j=1;j<=m;j++) {
if(ff[j]==0||ff[j]==9*n)continue;
for(k=j+1;k<=m;k++) {
int flag1=0,flag2=0;
if(ma[i][j]>0&&ma[i][k]<9) {
if(dp[k][j])return 1;
flag1=1;
}
if(ma[i][j]<9&&ma[i][k]>0) {
if(dp[j][k])return 1;
flag2=1;
}
if(flag1)dp[j][k]=1;
if(flag2)dp[k][j]=1;
}
}
}
return 0;
}
int main() {
int m,i,j,s,n,t,suma,k,sumb,T,cou=0;
scanf("%d",&T);
while(T--) {
scanf("%d%d",&n,&m);
k=9;
s=0;t=n+m+1;
init();
suma=0;sumb=0;
for(i=1;i<=n;i++) {
scanf("%d",&f[i]);
suma+=f[i];
add(s,i,f[i]);
}
for(i=1;i<=m;i++) {
scanf("%d",&ff[i]);
sumb+=ff[i];
add(i+n,t,ff[i]);
}
for(i=1;i<=n;i++)
for(j=1;j<=m;j++)
add(i,j+n,k);
if(suma!=sumb) {
printf("Case #%d: So naive!\n",++cou);
continue;
}
k=dinic(s,t);
if(k!=suma) {
printf("Case #%d: So naive!\n",++cou);
continue;
}
k=judge(n,m);
// printf("%d\n",k);
if(k)
printf("Case #%d: So young!\n",++cou);
else
printf("Case #%d: So simple!\n",++cou);
}
return 0;}

版权声明:本文博客原创文章。博客,未经同意,不得转载。

hdu 4975 最大流问题解决队伍和矩阵,利用矩阵dp优化的更多相关文章

  1. 学习心得:《十个利用矩阵乘法解决的经典题目》from Matrix67

    本文来自:http://www.matrix67.com/blog/archives/tag/poj大牛的博文学习学习 节选如下部分:矩阵乘法的两个重要性质:一,矩阵乘法不满足交换律:二,矩阵乘法满足 ...

  2. 【转】Matrix67:十个利用矩阵乘法解决的经典题目

    好像目前还没有这方面题目的总结.这几天连续看到四个问这类题目的人,今天在这里简单写一下.这里我们不介绍其它有关矩阵的知识,只介绍矩阵乘法和相关性质.    不要以为数学中的矩阵也是黑色屏幕上不断变化的 ...

  3. 利用Cayley-Hamilton theorem 优化矩阵线性递推

    平时有关线性递推的题,很多都可以利用矩阵乘法来解决. 时间复杂度一般是O(K3logn)因此对矩阵的规模限制比较大. 下面介绍一种利用利用Cayley-Hamilton theorem加速矩阵乘法的方 ...

  4. 矩阵乘法&矩阵快速幂&矩阵快速幂解决线性递推式

    矩阵乘法,顾名思义矩阵与矩阵相乘, 两矩阵可相乘的前提:第一个矩阵的行与第二个矩阵的列相等 相乘原则: a b     *     A B   =   a*A+b*C  a*c+b*D c d     ...

  5. HDU 4975 A simple Gaussian elimination problem.

    A simple Gaussian elimination problem. Time Limit: 1000ms Memory Limit: 65536KB This problem will be ...

  6. HDU 5318——The Goddess Of The Moon——————【矩阵快速幂】

    The Goddess Of The Moon Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/ ...

  7. hdu 1588 Gauss Fibonacci(矩阵嵌矩阵)

    题目大意: 求出斐波那契中的 第 k*i+b 项的和. 思路分析: 定义斐波那契数列的矩阵 f(n)为斐波那契第n项 F(n) = f(n+1) f(n) 那么能够知道矩阵 A = 1 1 1  0 ...

  8. 矩阵乘法&&矩阵快速幂&&最基本的矩阵模型——斐波那契数列

    矩阵,一个神奇又令人崩溃的东西,常常用来优化序列递推 在百度百科中,矩阵的定义: 在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合 ,最早来自于方程组的系数及常数所构成的方阵.这一 ...

  9. Codeforces 947E Perpetual Subtraction (线性代数、矩阵对角化、DP)

    手动博客搬家: 本文发表于20181212 09:37:21, 原地址https://blog.csdn.net/suncongbo/article/details/84962727 呜啊怎么又是数学 ...

随机推荐

  1. (二十)unity4.6得知Ugui中国文献-------另外-InputModules

    大家好.我是太阳广东.   转载请注明出处:http://write.blog.csdn.net/postedit/38922399 更全的内容请看我的游戏蛮牛地址:http://www.unitym ...

  2. Shrio登陆验证实例详细解读(转)

    摘要:本文采用了Spring+SpringMVC+Mybatis+Shiro+Msql来写了一个登陆验证的实例,下面来看看过程吧!整个工程基于Mavevn来创建,运行环境为JDK1.6+WIN7+to ...

  3. 采用Eclipse中间Maven构建Web项目错误(一)

    采用Eclipse中间Maven构建Web工程 1.在进行上述操作时.pom.xml一直报错 <project xmlns="http://maven.apache.org/POM/4 ...

  4. CallContext和多线程

    前一段时间正好要在某个网页程序上开一个多线程调用多个组件的尝试,这些组件是有其他团队开发的(如:印度/俄罗斯),所以修改它们的代码看起来是不太现实的,但是,令人恼火的是他们的代码中大量的用到了AppC ...

  5. ps命令用法详解(转)

    ps p 22763  -L -o pcpu,pid,tid,time,tname,cmd,pmem,rss --sort rss  按rss排序 ps p 26653 -L -o pcpu,tid ...

  6. 自定义错误页面mvc用法

    原谅我这个新手,对大神们来说这么简单的问题,竟折腾了我一个上午,仅此文章做个记录,供以后备用. 自定义错误页面(custom error pages)在asp.net webform里的配置请看htt ...

  7. Interpolator(插值器)的种类

    Interpolator(插值器)的种类 Interpolator被用来修饰动画效果,定义动画的变化率,可以使存在的动画效果accelerated(加速),decelerated(减速),repeat ...

  8. GLEW_ERROR_NO_GL_VERSION的解决方法

    关于 GLenum err = glewInit(); if (GLEW_OK != err) fprintf(stderr, "error initializaing GLew %s\n& ...

  9. javascript动画中的“帧”

    在写游戏的时候,动画移动的速度需要保持一致,为了在各个软硬件环境中速度的一致,需要考虑帧频的不同. 计算时间系数: 时间系数 = 目标FPS / 实际FPS 计算实际FPS actualFPS = 1 ...

  10. 【网络流量最大流量】poj3281Dining

    /* EK算法版本号,哦,慢.....见下文dinic版本号 ----------------------------------------- 最大的问题是网络流量问题 -------------- ...