Tesseract是一个开源的OCR(Optical Character Recognition,光学字符识别)引擎,可以识别多种格式的图像文件并将其转换成文本,目前已支持60多种语言(包括中文)。 Tesseract最初由HP公司开发,后来由Google维护,目前发布在Googel Project上。地址为http://code.google.com/p/tesseract-ocr/

使用默认的语言库识别

 

1.安装Tesseract

        从http://code.google.com/p/tesseract-ocr/downloads/list下载Tesseract,目前版本为Tesseract3.02。因为只是测试使用,这里直接下载winodws下的安装文件tesseract-ocr-setup-3.02.02.exe。安装成功后会在相应磁盘上生成一个Tesseract-OCR目录。通过目录下的tesseract.exe程序就可以对图像字符进行识别了。
2.准备一副待识别的图像,这里用画图工具随便写了一串数字,保存为number.jpg,如下图所示:
        

3.  打开命令行,定位到Tesseract-OCR目录,输入命令:

  1. tesseract.exe number.jpg result -l eng
 tesseract.exe number.jpg result -l eng

其中result表示输出结果文件txt名称,eng表示用以识别的语言文件为英文。

3.  打开Tesseract-OCR目录下的result.txt文件,看到识别的结果为7542315857,有3个字符识别错误,识别率还不是很高,那有没有什么方法来提供识别率呢?Tesseract提供了一套训练样本的方法,用以生成自己所需的识别语言库。下面介绍一下具体训练样本的方法。

训练样本

 
关于如何训练样本,Tesseract-OCR官网有详细的介绍http://code.google.com/p/tesseract-ocr/wiki/TrainingTesseract3。这里通过一个简单的例子来介绍一下如何进行样本训练。
 

1.下载工具jTessBoxEditor. http://sourceforge.net/projects/vietocr/files/jTessBoxEditor/,这个工具是用来训练样本用的,由于该工具是用JAVA开发的,需要安装JAVA虚拟机才能运行,安装教程http://jingyan.baidu.com/article/09ea3ede2b5f86c0aede39b9.html

2. 获取样本图像。用画图工具绘制了5张0-9的文样本图像(当然样本越多越好),如下图所示:

3.合并样本图像。运行jTessBoxEditor工具,在点击菜单栏中Tools--->Merge TIFF。在弹出的对话框中选择样本图像(按Shift选择多张),合并成num.font.exp0.tif文件。4.生成Box File文件。打开命令行,执行命令:

  1. tesseract.exe num.font.exp0.tif num.font.exp0 batch.nochop makebox
  tesseract.exe num.font.exp0.tif num.font.exp0 batch.nochop makebox

生成的BOX文件为num.font.exp0.box,BOX文件为Tessercat识别出的文字和其坐标。

注:Make Box File的命令格式为:

  1. tesseract [lang].[fontname].exp[num].tif [lang].[fontname].exp[num] batch.nochop makebox
  tesseract [lang].[fontname].exp[num].tif [lang].[fontname].exp[num] batch.nochop makebox

其中lang为语言名称,fontname为字体名称,num为序号,可以随便定义。

5.文字校正。运行jTessBoxEditor工具,打开num.font.exp0.tif文件(必须将上一步生成的.box和.tif样本文件放在同一目录),如下图所示。可以看出有些字符识别的不正确,可以通过该工具手动对每张图片中识别错误的字符进行校正。校正完成后保存即可。

6.定义字体特征文件。Tesseract-OCR3.01以上的版本在训练之前需要创建一个名称为font_properties的字体特征文件。

font_properties不含有BOM头,文件内容格式如下:

  1. <fontname> <italic> <bold> <fixed> <serif> <fraktur>
<fontname> <italic> <bold> <fixed> <serif> <fraktur>

其中fontname为字体名称,必须与[lang].[fontname].exp[num].box中的名称保持一致。<italic> 、<bold> 、<fixed> 、<serif>、 <fraktur>的取值为1或0,表示字体是否具有这些属性。

这里在样本图片所在目录下创建一个名称为font_properties的文件,用记事本打开,输入以下下内容:

  1. font 0 0 0 0 0
font 0 0 0 0 0

这里全取值为0,表示字体不是粗体、斜体等等。 7.生成语言文件。在样本图片所在目录下创建一个批处理文件,输入如下内容。

  1. rem 执行改批处理前先要目录下创建font_properties文件
  2. echo Run Tesseract for Training..
  3. tesseract.exe num.font.exp0.tif num.font.exp0 nobatch box.train
  4. echo Compute the Character Set..
  5. unicharset_extractor.exe num.font.exp0.box
  6. mftraining -F font_properties.txt -U unicharset -O num.unicharset num.font.exp0.tr
  7. echo Clustering..
  8. cntraining.exe num.font.exp0.tr
  9. echo Rename Files..
  10. rename normproto num.normproto
  11. rename inttemp num.inttemp
  12. rename pffmtable num.pffmtable
  13. rename shapetable num.shapetable
  14. echo Create Tessdata..
  15. combine_tessdata.exe num.
rem 执行改批处理前先要目录下创建font_properties文件

echo Run Tesseract for Training..
tesseract.exe num.font.exp0.tif num.font.exp0 nobatch box.train echo Compute the Character Set..
unicharset_extractor.exe num.font.exp0.box
mftraining -F font_properties.txt -U unicharset -O num.unicharset num.font.exp0.tr echo Clustering..
cntraining.exe num.font.exp0.tr echo Rename Files..
rename normproto num.normproto
rename inttemp num.inttemp
rename pffmtable num.pffmtable
rename shapetable num.shapetable echo Create Tessdata..
combine_tessdata.exe num.

将批处理通过命令行执行。执行后的结果如下:

需确认打印结果中的Offset 1、3、4、5、13这些项不是-1。这样,一个新的语言文件就生成了。

num.traineddata便是最终生成的语言文件,将生成的num.traineddata拷贝到Tesseract-OCR-->tessdata目录下。可以用它来进行字符识别了。

 

使用训练后的语言库识别

用训练后的语言库识别number.jpg文件, 打开命令行,定位到Tesseract-OCR目录,输入命令:

  1. tesseract.exe number.jpg result -l num
tesseract.exe number.jpg result -l num

识别结果如如图所示,可以看到识别率提高了不少。通过自定义训练样本,可以进行图形验证码、车牌号码识别等。感兴趣的朋友可以研究研究。

Tesseract-OCR使用记录的更多相关文章

  1. Tesseract——OCR图像识别 入门篇

    Tesseract——OCR图像识别 入门篇 最近给了我一个任务,让我研究图像识别,从我们项目的screenshot中识别文字信息,so我开始了学习,与大家分享下. 我看到目前OCR技术有很多,最主要 ...

  2. tesseract ocr文字识别Android实例程序和训练工具全部源代码

    tesseract ocr是一个开源的文字识别引擎,Android系统中也可以使用.可以识别50多种语言,通过自己训练识别库的方式,可以大大提高识别的准确率. 为了节省大家的学习时间,现将自己近期的学 ...

  3. Tesseract Ocr引擎

    Tesseract Ocr引擎 1.Tesseract介绍 tesseract 是一个google支持的开源ocr项目,其项目地址:https://github.com/tesseract-ocr/t ...

  4. 开源图片文字识别引擎——Tesseract OCR

    Tessseract为一款开源.免费的OCR引擎,能够支持中文十分难得.虽然其识别效果不是很理想,但是对于要求不高的中小型项目来说,已经足够用了. 文字识别可应用于许多领域,如阅读.翻译.文献资料的检 ...

  5. Python下Tesseract Ocr引擎及安装介绍

    1.Tesseract介绍 tesseract 是一个google支持的开源ocr项目,其项目地址:https://github.com/tesseract-ocr/tesseract,目前最新的源码 ...

  6. Tesseract OCR使用介绍

    #Tesseract OCR使用介绍 ##目录[TOC] ##下载地址及介绍 官网介绍:http://code.google.com/p/tesseract-ocr/wiki/TrainingTess ...

  7. Tesseract ocr 3.02学习记录一

    光学字符识别(OCR,Optical Character Recognition)是指对文本资料进行扫描,然后对图像文件进行分析处理,获取文字及版面信息的过程.OCR技术非常专业,一般多是印刷.打印行 ...

  8. selenium使用笔记(二)——Tesseract OCR

    在自动化测试过程中我们经常会遇到需要输入验证码的情况,而现在一般以图片验证码居多.通常我们处理这种情况应该用最简单的方式,让开发给个万能验证码或者直接将验证码这个环节跳过.之前在技术交流群里也跟朋友讨 ...

  9. alfresco install in linux, and integrated with tesseract ocr

    本文描述在Linux系统上安装Alfresco的步骤: 1. 下载安装文件:alfresco-community-5.0.d-installer-linux-x64.bin 2. 增加执行权限并执行: ...

  10. 使用Tesseract OCR识别验证码

    1.下载Tessrac OCR,默认安装 2.把验证码code.jpg图片放在D盘 3.打开cmd,进入D盘,输入:tesseract  code.jpg result 4.进入D盘,生成了resul ...

随机推荐

  1. 抛弃jQuery,拥抱原生JavaScript

    前端发展很快,现代浏览器原生 API 已经足够好用.我们并不需要为了操作 DOM.Event 等再学习一下 jQuery 的 API.同时由于 React.Angular.Vue 等框架的流行,直接操 ...

  2. Linux查看CPU和内存使用情况 【转】

    Linux查看CPU和内存使用情况 在系统维护的过程中,随时可能有需要查看 CPU 使用率,并根据相应信息分析系统状况的需要.在 CentOS 中,可以通过 top 命令来查看 CPU 使用状况.运行 ...

  3. PHP正则表达式试题

    1.POSIX正则表达式扩展在PHP哪个版本被废弃了 2.请写出匹配任意数字,任意空白字符,任意单词字符的符号? 3.执行一个正则表达式匹配的函数是什么?返回的结果有哪些? 4.执行一个全局正则表达式 ...

  4. shell 变量说明

    变量说明 $$Shell本身的PID(ProcessID)$!Shell最后运行的后台Process的PID$?最后运行的命令的结束代码(返回值)$-使用Set命令设定的Flag一览$*所有参数列表. ...

  5. 得到root,并且获取密码

    第一次使用ubuntu的时候 先使用这个命令 sudo passwd root 然后就可以改密码了

  6. xmlHTTP技术资料

    一.数据库远程管理技术 基于互联网的广域网现代应用中的一个重要环节是数据库远程监控.首先简单回顾一下互联网上的数据库远程管理技术的发展过程和方式: 早期通过编写CGI-BIN程序模块进行数据库远程管理 ...

  7. word project 2010破解

    1.用这个工具提示失败: failed to inject memory Failed to inject memory!解决方法 浏览:6545 | 更新:2013-07-15 15:52 在激活o ...

  8. servlet容器开发要点

    v1 是一个http服务器. v2 是一个servlet容器, 可以提供servlet的服务.   =>  动态load servlet字节码,并运行它( 按生命周期). servlet容器它来 ...

  9. web项目docker化的两种方法

    标题所讲的两种方法其实就是创建docker镜像的两种方法 第一种:启动镜像后进入容器中操作,将需要的软件或者项目移动到容器中,安装或者部署,然后退出即可 第二种:编写dockerfile,将需要的镜像 ...

  10. Echarts自适应浏览器大小

    var myChart = echarts.init(document.getElementById('sitesChar')); var option = { title : { text: 'No ...