问题:

  旅行商从 a 开始周游下图所有的城市一次,然后回到 a,城市之间的旅行代价在图中标明。

  请选择一个最优的行走顺序使得周游所有城市的代价最小。

      

思路:

  随便怎么周游,对于一个城市来说,一定有一条进的路和一条出的路。

  对于每个城市来说,暂时都选取代价最小的两条路来作为理想的路线,就算这些路不合理。

  比如对于 a 来说,选择 a<->c(1) & a<->b(3) ;对于 e 来说,选择 e<->c(2) & e<->d(3)。

  把所有的这些值加起来除以2,

  本题即 lb=[(a<->c+a<->b)+(b<->a+b<->c)+(c<->a+c<->e)+(d<->e+d<->c)+(e<->c+e<->d)]/2=[(1+3)+(3+6)+(1+2)+(3+4)+(2+3)]/2=14 .

   把这个值当成是理想的最小代价,然后接下来搜索解空间树的时候,都在该基础上进行。

  下面画出搜索解空间树的过程,其中方框上面的是点的名称,下面是假设的理想周游代价,方框头顶是搜索顺序:

  刚开始从 a 走

  

  从 a 可以到达 b、c、d、e,

  

  这里有一个小细节,就是图中的 2 节点。想想如果周游路线 a<->b<->d<->e<->a 和 a<->e<->d<-><->c<->b<->a ,这两条路线其实是一样的,但是如果不加处理的话,可能两条路线会在搜索的时候都被搜索过,这样浪费了时间。因此,我们这里做个小约定,约定 b 要在 c 之前出现。因此,图中节点 2 就被抛弃了。

  继续上面的,从 a 走到那些点后,怎么计算理想代价呢,也就是说怎么计算 lb 呢。

  我们用 a 到 d 来举例子吧。

  最开始 lb 是选取每个点的代价最小的两条路, lb=[(a<->c+a<->b)+(b<->a+b<->c)+(c<->a+c<->e)+(d<->e+d<->c)+(e<->c+e<->d)]/2。a 走的是c 和 b 这两个,d 走的是e 和 c 。

  现在我们选择 a<->d ,那 d 的一条路要被改成 a 了。我们选择将原来的 a<->b 改成 a<->d,因为要使代价最小,所以选择代价大的来替换。那么 d<->c 就被替换成 d<->a了。这时再计算就可以得到新的 lb 了。  

  我们应该选择 lb 最小的往下搜索,较大的等下再搜索。于是

  

  继续向下

  

  这时已经找出两个周游路程了(因为最后肯定要回到 a 就没向下画了),我们继续搜索,看看有没再好点的解。向上退一层,就是 节点 6 了,所以

  

  继续搜索,发现节点 7 才走到 e 就要 19,而 节点 11 走完了只需要 16,所以把它抛弃,继续退回,发现 3,4 都不行

  

  得到了最优解。

  

代码:

  代码我不会写,哈哈哈哈哈哈哈哈哈。。。。

TSP问题(旅行商问题)[分支限界法]的更多相关文章

  1. Hopfield神经网络和TSP问题

    一.TSP问题 旅行商问题,又叫货郎担问题.它是指如下问题:在完全图中寻找一条最短的哈密尔顿回路. 哈密尔顿回路问题:给定一个图,判断图中是否存在哈密尔顿回路. 哈密尔顿回路:寻找一条回路,经过图中所 ...

  2. 蚁群算法(Java)tsp问题

      1.理论概述 1.1.TSP问题 旅行商问题,即TSP问题(旅行推销员问题.货郎担问题),是数学领域中著名问题之一.假设有一个旅行商人要拜访n个城市,他必须选择所要走的路径,路径的限制是每个城市只 ...

  3. TSP问题之状压dp法

    首先,我们先来认识一下什么叫做TSP问题 旅行商问题,即TSP问题(Traveling Salesman Problem)又译为旅行推销员问题.货郎担问题,是数学领域中著名问题之一.假设有一个旅行商人 ...

  4. 蚁群算法解决TSP问题

    代码实现 运行结果及参数展示 alpha=1beta=5 rho=0.1  alpha=1beta=1rho=0.1 alpha=0.5beta=1rho=0.1 概念蚁群算法(AG)是一种模拟蚂蚁觅 ...

  5. 赋能时空云计算,阿里云数据库时空引擎Ganos上线

    随着移动互联网.位置感知技术.对地观测技术的快速发展,时空信息已从传统GIS行业渗透到大众应用及各行各业.从静态POI(兴趣点)到APP位置信息,从导航电子地图到车辆行驶轨迹,从卫星影像到三维城市建模 ...

  6. 「算法笔记」状压 DP

    一.关于状压 dp 为了规避不确定性,我们将需要枚举的东西放入状态.当不确定性太多的时候,我们就需要将它们压进较少的维数内. 常见的状态: 天生二进制(开关.选与不选.是否出现--) 爆搜出状态,给它 ...

  7. 基于分支限界法的旅行商问题(TSP)一

    旅行推销员问题(英语:Travelling salesman problem, TSP)是这样一个问题:给定一系列城市和每对城市之间的距离,求解访问每一座城市一次并回到起始城市的最短回路.它是组合优化 ...

  8. 基于分支限界法的旅行商问题(TSP)二

    和上篇一样,考前写写伪代码,考完了补上具体的解释和代码. 状态{矩阵,结果集,下界} 全局结果集列表,全局上界初始为Infinite 建立一个heap,存储状态,出堆规则为拥有最小的下界. 利用red ...

  9. 贪心算法:旅行商问题(TSP)

    TSP问题(Traveling Salesman Problem,旅行商问题),由威廉哈密顿爵士和英国数学家克克曼T.P.Kirkman于19世纪初提出.问题描述如下: 有若干个城市,任何两个城市之间 ...

随机推荐

  1. Pro/TOOLKIT入门教程汇总

    手把手教你开发Pro/TOOLKIT应用程序 手把手教你开发Pro/TOOLKIT应用程序(一) 手把手教你开发Pro/TOOLKIT应用程序(二) 手把手教你开发Pro/TOOLKIT应用程序(三) ...

  2. STL笔记之【map之添加元素】

    //---------------------------------------------------------// 向map中插入元素的方法比较//---------------------- ...

  3. Ubuntu14.04下SP_Flash_Tool_exe_Linux无法烧录

    1,用命令lsusb查看usb信息. 2,vim 20-mm-blacklist-mtk.rules 输入下面内容: ATTRS{idVendor}=="0e8d",ENV{ID_ ...

  4. Barnicle

    Barnicle Barney is standing in a bar and starring at a pretty girl. He wants to shoot her with his h ...

  5. 最新百度地图支持Fragment(注意事项)(转)

    原文: 最新百度地图支持Fragment(注意事项)   开篇:老的百度地图通常都要继承MapActivity,这样不利于代码的可扩展性,再加上Fragment的流行,老的百度地图已经远远不能满足的大 ...

  6. 利用dokan作虚拟磁盘开发

    dokan是用户态的文件系统驱动,可以称之为fuse for windows.可以用来开发虚拟磁盘,即在“我的电脑”中虚拟出一个硬盘来,可以是硬盘,也可以是可移动磁盘或者网络硬盘. CreateFil ...

  7. Lambda应用设计模式 [转载]

    Lambda应用设计模式   前言 在使用 Lambda 表达式时,我们常会碰到一些典型的应用场景,而从常用场景中抽取出来的应用方式可以描述为应用模式.这些模式可能不全是新的模式,有的参考自 Java ...

  8. Eclipse 配置工程

    Eclipse改UTF-8 Window->Preferences->General->Workspace->Text file Encoding Eclipse配置tomca ...

  9. 学习Redis从这里开始

    本文主要内容 Redis与其他软件的相同之处和不同之处 Redis的用法 使用Python示例代码与Redis进行简单的互动 使用Redis解决实际问题 Redis是一个远程内存数据库,它不仅性能强劲 ...

  10. Linux中通过命令直接删除文件中最后一行

    何谓Sed(Stream EDitor):Sed原为UNIX系统上的非交谈式文字编辑器(non-interactive stream editor).当Sed读入待编辑文件,会依编辑命令来进行文件的编 ...