接着上篇blog,继续看log里面的信息如下:

+ echo 'Training Naive Bayes model'
Training Naive Bayes model
+ ./bin/mahout trainnb -i /home/mahout/mahout-work-mahout/20news-train-vectors -el -o /home/mahout/mahout-work-mahout/model -li /home/mahout/mahout-work-mahout/labelindex -ow

这里mahout的trainnb对应的源码文件是TrainNaiveBayesJob类,该类主要的工作是:(1)新建了一个LabelIndex的文件;(2)执行了一个prepareJob,Mapper和Reducer分别是:IndexInstancesMapper、VectorSumReducer;(2)执行了另外的一个prepareJob,Mapper和Reducer分别是:WeightsMapper、VectorSumReducer;本篇主要分析前面两个工作。

新建LabelIndex的代码如下:

private long createLabelIndex(Path labPath) throws IOException {
long labelSize = 0;
if (hasOption(LABELS)) {
Iterable<String> labels = Splitter.on(",").split(getOption(LABELS));
labelSize = BayesUtils.writeLabelIndex(getConf(), labels, labPath);
} else if (hasOption(EXTRACT_LABELS)) {
SequenceFileDirIterable<Text, IntWritable> iterable =
new SequenceFileDirIterable<Text, IntWritable>(getInputPath(), PathType.LIST, PathFilters.logsCRCFilter(), getConf());
labelSize = BayesUtils.writeLabelIndex(getConf(), labPath, iterable);
}
return labelSize;
}

这里的主要工作是把相关的文件名转换为数字,文件名如下图:

下面看Mapper,IndexInstancesMapper的主要代码如下:

 labelIndex = BayesUtils.readIndexFromCache(ctx.getConfiguration());
String label = labelText.toString().split("/")[1];
if (labelIndex.containsKey(label)) {
ctx.write(new IntWritable(labelIndex.get(label)), instance);

首先在setup函数中读取labelindex的map映射关系,然后在map中针对输入/alt.atheism/51060解析/后面的字符串,即文件名进行匹配,输出对应的数字和相应的value不变;

VectorSumReducer:

 Vector vector = null;
for (VectorWritable v : values) {
if (vector == null) {
vector = v.get();
} else {
vector.assign(v.get(), Functions.PLUS);
}
}
ctx.write(key, new VectorWritable(vector));

上面的代码就是把相同的文件对应的word的单词的个数全部加起来,由于一共有20个文件,所以这里的reduce输出应该有20个,对应log里面的信息,可以看到确实匹配,如下图:

这里额可以通过下面的代码来测试相关的文件:

package mahout.fansy.test.bayes.read;

import java.io.IOException;
import java.net.URI;
import java.util.HashMap;
import java.util.Map; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.SequenceFile;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.Writable;
import org.apache.hadoop.util.ReflectionUtils;
import org.apache.mahout.math.VectorWritable; public class ReadLabelIndex { /**
* @param args
*/
public static Configuration conf=new Configuration();
static String fPath="";
static String trainPath="";
static{
conf.set("mapred.job.tracker", "ubuntu:9001");
fPath="hdfs://ubuntu:9000/home/mahout/mahout-work-mahout/labelindex"; // lableindex 数据文件
trainPath="hdfs://ubuntu:9000/home/mahout/mahout-work-mahout/"
+"20news-train-vectors/part-r-00000"; // 训练样本数据
}
public static void main(String[] args) throws IOException {
// readFromFile(fPath);
readFromFile(trainPath);
} /**
* 读取LabelIndex文件
* @param fPath
* @return
* @throws IOException
*/
public static Map<Writable,Writable> readFromFile(String fPath) throws IOException{
FileSystem fs = FileSystem.get(URI.create(fPath), conf);
Path path = new Path(fPath);
Map<Writable,Writable> map=new HashMap<Writable,Writable>();
SequenceFile.Reader reader = null;
try {
reader = new SequenceFile.Reader(fs, path, conf);
Writable key = (Writable)
ReflectionUtils.newInstance(reader.getKeyClass(), conf);
Writable value = (Writable)
ReflectionUtils.newInstance(reader.getValueClass(), conf);
while (reader.next(key, value)) {
// Writable k=; // 如何实现Writable的深度复制?
// map.put(key, value);
System.out.println(key.toString()+", "+value.toString());
System.exit(-1);// 只打印第一条记录
}
} finally {
IOUtils.closeStream(reader);
}
return map;
} }

这里在写的时候想做一个通用的,所以需要对Writable深度复制,但是一时间还没有想到办法,所以这里留个问题,有时间解决。

分享,成长,快乐

转载请注明blog地址:http://blog.csdn.net/fansy1990

Twenty Newsgroups Classification实例任务之TrainNaiveBayesJob(一)的更多相关文章

  1. mahout 运行Twenty Newsgroups Classification实例

    按照mahout官网https://cwiki.apache.org/confluence/display/MAHOUT/Twenty+Newsgroups的说法,我只用运行一条命令就可以完成这个算法 ...

  2. Twenty Newsgroups Classification任务之二seq2sparse(5)

    接上篇blog,继续分析.接下来要调用代码如下: // Should document frequency features be processed if (shouldPrune || proce ...

  3. Twenty Newsgroups Classification任务之二seq2sparse(3)

    接上篇,如果想对上篇的问题进行测试其实可以简单的编写下面的代码: package mahout.fansy.test.bayes.write; import java.io.IOException; ...

  4. Twenty Newsgroups Classification任务之二seq2sparse

    seq2sparse对应于mahout中的org.apache.mahout.vectorizer.SparseVectorsFromSequenceFiles,从昨天跑的算法中的任务监控界面可以看到 ...

  5. Twenty Newsgroups Classification任务之二seq2sparse(2)

    接上篇,SequenceFileTokenizerMapper的输出文件在/home/mahout/mahout-work-mahout0/20news-vectors/tokenized-docum ...

  6. W3School-CSS 分类 (Classification) 实例

    CSS 分类 (Classification) 实例 CSS 实例 CSS 背景实例 CSS 文本实例 CSS 字体(font)实例 CSS 边框(border)实例 CSS 外边距 (margin) ...

  7. CSS 分类 (Classification) 实例

    CSS 分类 (Classification) 实例CSS 分类属性 (Classification)CSS 分类属性允许你控制如何显示元素,设置图像显示于另一元素中的何处,相对于其正常位置来定位元素 ...

  8. W3School-CSS 伪元素 (Pseudo-elements) 实例

    CSS 伪元素 (Pseudo-elements)实例 CSS 实例 CSS 背景实例 CSS 文本实例 CSS 字体(font)实例 CSS 边框(border)实例 CSS 外边距 (margin ...

  9. W3School-CSS 伪类 (Pseudo-classes) 实例

    CSS 伪类 (Pseudo-classes) 实例 CSS 实例 CSS 背景实例 CSS 文本实例 CSS 字体(font)实例 CSS 边框(border)实例 CSS 外边距 (margin) ...

随机推荐

  1. the Meta-Object Compiler (moc)

    the Meta-Object Compiler (moc) 元对象编译器是处理Qt的C++扩展的程序. moc工具读取C++头文件,如果它找到一个或者多个类声明包含Q_OBJECT宏.它生为那些类成 ...

  2. mysql启动的四种方式

    mysql的四种启动方式: .mysqld 启动mysql服务器:./mysqld --defaults-file=/etc/my.cnf --user=root 客户端连接: mysql --def ...

  3. Mapper XML Files详解

    扫扫关注"茶爸爸"微信公众号 坚持最初的执着,从不曾有半点懈怠,为优秀而努力,为证明自己而活. Mapper XML Files The true power of MyBatis ...

  4. C语言的system函数

     这个是与操作系统有关的函数,在linux/unix下system可以运行所有的shell命令windows下system可运行所有的windows执行文件,除DOS命令外,也可运行windwos ...

  5. 京香julia_百度百科

    京香julia_百度百科 京香julia

  6. Java 使用JDBC、DBCP、C3P0访问数据库

    JDBC: Connection conn = null; Statement stmt = null; ResultSet rs = null; // 1.加载驱动 try { Class.forN ...

  7. POJ 2112 Optimal Milking (二分+最短路径+网络流)

    POJ  2112 Optimal Milking (二分+最短路径+网络流) Optimal Milking Time Limit: 2000MS   Memory Limit: 30000K To ...

  8. JS Call()与Apply()

    JS Call()与Apply() ECMAScript规范给所有函数都定义了Call()与apply()两个方法,call与apply的第一个参数都是需要调用的函数对象,在函数体内这个参数就是thi ...

  9. SqlServer和Oracle中一些常用的sql语句7 游标

    declare db_cursor4 scroll cursor for select * from 供应商 --声明游标 open db_cursor4 --打开游标 fetch first fro ...

  10. CodeForces 462B Appleman and Card Game(贪心)

    题目链接:http://codeforces.com/problemset/problem/462/B Appleman has n cards. Each card has an uppercase ...