Twenty Newsgroups Classification实例任务之TrainNaiveBayesJob(一)
接着上篇blog,继续看log里面的信息如下:
+ echo 'Training Naive Bayes model'
Training Naive Bayes model
+ ./bin/mahout trainnb -i /home/mahout/mahout-work-mahout/20news-train-vectors -el -o /home/mahout/mahout-work-mahout/model -li /home/mahout/mahout-work-mahout/labelindex -ow
这里mahout的trainnb对应的源码文件是TrainNaiveBayesJob类,该类主要的工作是:(1)新建了一个LabelIndex的文件;(2)执行了一个prepareJob,Mapper和Reducer分别是:IndexInstancesMapper、VectorSumReducer;(2)执行了另外的一个prepareJob,Mapper和Reducer分别是:WeightsMapper、VectorSumReducer;本篇主要分析前面两个工作。
新建LabelIndex的代码如下:
private long createLabelIndex(Path labPath) throws IOException {
long labelSize = 0;
if (hasOption(LABELS)) {
Iterable<String> labels = Splitter.on(",").split(getOption(LABELS));
labelSize = BayesUtils.writeLabelIndex(getConf(), labels, labPath);
} else if (hasOption(EXTRACT_LABELS)) {
SequenceFileDirIterable<Text, IntWritable> iterable =
new SequenceFileDirIterable<Text, IntWritable>(getInputPath(), PathType.LIST, PathFilters.logsCRCFilter(), getConf());
labelSize = BayesUtils.writeLabelIndex(getConf(), labPath, iterable);
}
return labelSize;
}
这里的主要工作是把相关的文件名转换为数字,文件名如下图:
下面看Mapper,IndexInstancesMapper的主要代码如下:
labelIndex = BayesUtils.readIndexFromCache(ctx.getConfiguration());
String label = labelText.toString().split("/")[1];
if (labelIndex.containsKey(label)) {
ctx.write(new IntWritable(labelIndex.get(label)), instance);
首先在setup函数中读取labelindex的map映射关系,然后在map中针对输入/alt.atheism/51060解析/后面的字符串,即文件名进行匹配,输出对应的数字和相应的value不变;
VectorSumReducer:
Vector vector = null;
for (VectorWritable v : values) {
if (vector == null) {
vector = v.get();
} else {
vector.assign(v.get(), Functions.PLUS);
}
}
ctx.write(key, new VectorWritable(vector));
上面的代码就是把相同的文件对应的word的单词的个数全部加起来,由于一共有20个文件,所以这里的reduce输出应该有20个,对应log里面的信息,可以看到确实匹配,如下图:
这里额可以通过下面的代码来测试相关的文件:
package mahout.fansy.test.bayes.read; import java.io.IOException;
import java.net.URI;
import java.util.HashMap;
import java.util.Map; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.SequenceFile;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.Writable;
import org.apache.hadoop.util.ReflectionUtils;
import org.apache.mahout.math.VectorWritable; public class ReadLabelIndex { /**
* @param args
*/
public static Configuration conf=new Configuration();
static String fPath="";
static String trainPath="";
static{
conf.set("mapred.job.tracker", "ubuntu:9001");
fPath="hdfs://ubuntu:9000/home/mahout/mahout-work-mahout/labelindex"; // lableindex 数据文件
trainPath="hdfs://ubuntu:9000/home/mahout/mahout-work-mahout/"
+"20news-train-vectors/part-r-00000"; // 训练样本数据
}
public static void main(String[] args) throws IOException {
// readFromFile(fPath);
readFromFile(trainPath);
} /**
* 读取LabelIndex文件
* @param fPath
* @return
* @throws IOException
*/
public static Map<Writable,Writable> readFromFile(String fPath) throws IOException{
FileSystem fs = FileSystem.get(URI.create(fPath), conf);
Path path = new Path(fPath);
Map<Writable,Writable> map=new HashMap<Writable,Writable>();
SequenceFile.Reader reader = null;
try {
reader = new SequenceFile.Reader(fs, path, conf);
Writable key = (Writable)
ReflectionUtils.newInstance(reader.getKeyClass(), conf);
Writable value = (Writable)
ReflectionUtils.newInstance(reader.getValueClass(), conf);
while (reader.next(key, value)) {
// Writable k=; // 如何实现Writable的深度复制?
// map.put(key, value);
System.out.println(key.toString()+", "+value.toString());
System.exit(-1);// 只打印第一条记录
}
} finally {
IOUtils.closeStream(reader);
}
return map;
} }
这里在写的时候想做一个通用的,所以需要对Writable深度复制,但是一时间还没有想到办法,所以这里留个问题,有时间解决。
分享,成长,快乐
转载请注明blog地址:http://blog.csdn.net/fansy1990
Twenty Newsgroups Classification实例任务之TrainNaiveBayesJob(一)的更多相关文章
- mahout 运行Twenty Newsgroups Classification实例
按照mahout官网https://cwiki.apache.org/confluence/display/MAHOUT/Twenty+Newsgroups的说法,我只用运行一条命令就可以完成这个算法 ...
- Twenty Newsgroups Classification任务之二seq2sparse(5)
接上篇blog,继续分析.接下来要调用代码如下: // Should document frequency features be processed if (shouldPrune || proce ...
- Twenty Newsgroups Classification任务之二seq2sparse(3)
接上篇,如果想对上篇的问题进行测试其实可以简单的编写下面的代码: package mahout.fansy.test.bayes.write; import java.io.IOException; ...
- Twenty Newsgroups Classification任务之二seq2sparse
seq2sparse对应于mahout中的org.apache.mahout.vectorizer.SparseVectorsFromSequenceFiles,从昨天跑的算法中的任务监控界面可以看到 ...
- Twenty Newsgroups Classification任务之二seq2sparse(2)
接上篇,SequenceFileTokenizerMapper的输出文件在/home/mahout/mahout-work-mahout0/20news-vectors/tokenized-docum ...
- W3School-CSS 分类 (Classification) 实例
CSS 分类 (Classification) 实例 CSS 实例 CSS 背景实例 CSS 文本实例 CSS 字体(font)实例 CSS 边框(border)实例 CSS 外边距 (margin) ...
- CSS 分类 (Classification) 实例
CSS 分类 (Classification) 实例CSS 分类属性 (Classification)CSS 分类属性允许你控制如何显示元素,设置图像显示于另一元素中的何处,相对于其正常位置来定位元素 ...
- W3School-CSS 伪元素 (Pseudo-elements) 实例
CSS 伪元素 (Pseudo-elements)实例 CSS 实例 CSS 背景实例 CSS 文本实例 CSS 字体(font)实例 CSS 边框(border)实例 CSS 外边距 (margin ...
- W3School-CSS 伪类 (Pseudo-classes) 实例
CSS 伪类 (Pseudo-classes) 实例 CSS 实例 CSS 背景实例 CSS 文本实例 CSS 字体(font)实例 CSS 边框(border)实例 CSS 外边距 (margin) ...
随机推荐
- SuperSocket源码解析之会话生命周期
一 基本概念 会话(Session)是客户端与服务器进行通信的基本单元,也是一个Socket的封装,在http协议中也有Session机制,其主要作用封装一个通信单元socket,负责服务器与客户端消 ...
- mysql 结合keepalived测试
vip:192.168.32.66 192.168.32.6 主库: mysql> show variables like '%read_only%'; +------------------+ ...
- 基于visual Studio2013解决C语言竞赛题之0804成绩筛选
题目
- Swift - 使用NSURLSession同步获取数据(通过添加信号量)
过去通过 NSURLConnection.sendSynchronousRequest() 方法能同步请求数据.从iOS9起,苹果建议废除 NSURLConnection,使用 NSURLSessio ...
- perl malformed JSON string, neither tag, array, object, number, string or atom, at character offset
[root@wx03 ~]# cat a17.pl use JSON qw/encode_json decode_json/ ; use Encode; my $data = [ { 'name' = ...
- Android 讲述Help提示框
Android 讲述Help提示框 XML/HTML代码 <stringname="help_dialog_text"> <i>Author:fonter. ...
- iOS无处不在详解iOS集成第三方登录(SSO授权登录无需密码)
链接地址:http://www.it165.net/pro/html/201408/18884.html 1.前言 不多说,第三登录无处不在!必备技能,今天以新浪微博为例. 这是上次写的iOS第三方社 ...
- (升级版)Spark从入门到精通(Scala编程、案例实战、高级特性、Spark内核源码剖析、Hadoop高端)
本课程主要讲解目前大数据领域最热门.最火爆.最有前景的技术——Spark.在本课程中,会从浅入深,基于大量案例实战,深度剖析和讲解Spark,并且会包含完全从企业真实复杂业务需求中抽取出的案例实战.课 ...
- Basic4android:多功能的Android应用软件快速开发平台
Basic4android 是目前最简单.最强大的Android平台快速应用开发工具. ( "Basic4android is the simplest and most powerful ...
- Swift - 使用Core Data进行数据持久化存储
一,Core Data介绍 1,Core Data是iOS5之后才出现的一个数据持久化存储框架,它提供了对象-关系映射(ORM)的功能,即能够将对象转化成数据,也能够将保存在数据库中的数据还原成对象. ...