接着上篇blog,继续看log里面的信息如下:

+ echo 'Training Naive Bayes model'
Training Naive Bayes model
+ ./bin/mahout trainnb -i /home/mahout/mahout-work-mahout/20news-train-vectors -el -o /home/mahout/mahout-work-mahout/model -li /home/mahout/mahout-work-mahout/labelindex -ow

这里mahout的trainnb对应的源码文件是TrainNaiveBayesJob类,该类主要的工作是:(1)新建了一个LabelIndex的文件;(2)执行了一个prepareJob,Mapper和Reducer分别是:IndexInstancesMapper、VectorSumReducer;(2)执行了另外的一个prepareJob,Mapper和Reducer分别是:WeightsMapper、VectorSumReducer;本篇主要分析前面两个工作。

新建LabelIndex的代码如下:

private long createLabelIndex(Path labPath) throws IOException {
long labelSize = 0;
if (hasOption(LABELS)) {
Iterable<String> labels = Splitter.on(",").split(getOption(LABELS));
labelSize = BayesUtils.writeLabelIndex(getConf(), labels, labPath);
} else if (hasOption(EXTRACT_LABELS)) {
SequenceFileDirIterable<Text, IntWritable> iterable =
new SequenceFileDirIterable<Text, IntWritable>(getInputPath(), PathType.LIST, PathFilters.logsCRCFilter(), getConf());
labelSize = BayesUtils.writeLabelIndex(getConf(), labPath, iterable);
}
return labelSize;
}

这里的主要工作是把相关的文件名转换为数字,文件名如下图:

下面看Mapper,IndexInstancesMapper的主要代码如下:

 labelIndex = BayesUtils.readIndexFromCache(ctx.getConfiguration());
String label = labelText.toString().split("/")[1];
if (labelIndex.containsKey(label)) {
ctx.write(new IntWritable(labelIndex.get(label)), instance);

首先在setup函数中读取labelindex的map映射关系,然后在map中针对输入/alt.atheism/51060解析/后面的字符串,即文件名进行匹配,输出对应的数字和相应的value不变;

VectorSumReducer:

 Vector vector = null;
for (VectorWritable v : values) {
if (vector == null) {
vector = v.get();
} else {
vector.assign(v.get(), Functions.PLUS);
}
}
ctx.write(key, new VectorWritable(vector));

上面的代码就是把相同的文件对应的word的单词的个数全部加起来,由于一共有20个文件,所以这里的reduce输出应该有20个,对应log里面的信息,可以看到确实匹配,如下图:

这里额可以通过下面的代码来测试相关的文件:

package mahout.fansy.test.bayes.read;

import java.io.IOException;
import java.net.URI;
import java.util.HashMap;
import java.util.Map; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.SequenceFile;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.Writable;
import org.apache.hadoop.util.ReflectionUtils;
import org.apache.mahout.math.VectorWritable; public class ReadLabelIndex { /**
* @param args
*/
public static Configuration conf=new Configuration();
static String fPath="";
static String trainPath="";
static{
conf.set("mapred.job.tracker", "ubuntu:9001");
fPath="hdfs://ubuntu:9000/home/mahout/mahout-work-mahout/labelindex"; // lableindex 数据文件
trainPath="hdfs://ubuntu:9000/home/mahout/mahout-work-mahout/"
+"20news-train-vectors/part-r-00000"; // 训练样本数据
}
public static void main(String[] args) throws IOException {
// readFromFile(fPath);
readFromFile(trainPath);
} /**
* 读取LabelIndex文件
* @param fPath
* @return
* @throws IOException
*/
public static Map<Writable,Writable> readFromFile(String fPath) throws IOException{
FileSystem fs = FileSystem.get(URI.create(fPath), conf);
Path path = new Path(fPath);
Map<Writable,Writable> map=new HashMap<Writable,Writable>();
SequenceFile.Reader reader = null;
try {
reader = new SequenceFile.Reader(fs, path, conf);
Writable key = (Writable)
ReflectionUtils.newInstance(reader.getKeyClass(), conf);
Writable value = (Writable)
ReflectionUtils.newInstance(reader.getValueClass(), conf);
while (reader.next(key, value)) {
// Writable k=; // 如何实现Writable的深度复制?
// map.put(key, value);
System.out.println(key.toString()+", "+value.toString());
System.exit(-1);// 只打印第一条记录
}
} finally {
IOUtils.closeStream(reader);
}
return map;
} }

这里在写的时候想做一个通用的,所以需要对Writable深度复制,但是一时间还没有想到办法,所以这里留个问题,有时间解决。

分享,成长,快乐

转载请注明blog地址:http://blog.csdn.net/fansy1990

Twenty Newsgroups Classification实例任务之TrainNaiveBayesJob(一)的更多相关文章

  1. mahout 运行Twenty Newsgroups Classification实例

    按照mahout官网https://cwiki.apache.org/confluence/display/MAHOUT/Twenty+Newsgroups的说法,我只用运行一条命令就可以完成这个算法 ...

  2. Twenty Newsgroups Classification任务之二seq2sparse(5)

    接上篇blog,继续分析.接下来要调用代码如下: // Should document frequency features be processed if (shouldPrune || proce ...

  3. Twenty Newsgroups Classification任务之二seq2sparse(3)

    接上篇,如果想对上篇的问题进行测试其实可以简单的编写下面的代码: package mahout.fansy.test.bayes.write; import java.io.IOException; ...

  4. Twenty Newsgroups Classification任务之二seq2sparse

    seq2sparse对应于mahout中的org.apache.mahout.vectorizer.SparseVectorsFromSequenceFiles,从昨天跑的算法中的任务监控界面可以看到 ...

  5. Twenty Newsgroups Classification任务之二seq2sparse(2)

    接上篇,SequenceFileTokenizerMapper的输出文件在/home/mahout/mahout-work-mahout0/20news-vectors/tokenized-docum ...

  6. W3School-CSS 分类 (Classification) 实例

    CSS 分类 (Classification) 实例 CSS 实例 CSS 背景实例 CSS 文本实例 CSS 字体(font)实例 CSS 边框(border)实例 CSS 外边距 (margin) ...

  7. CSS 分类 (Classification) 实例

    CSS 分类 (Classification) 实例CSS 分类属性 (Classification)CSS 分类属性允许你控制如何显示元素,设置图像显示于另一元素中的何处,相对于其正常位置来定位元素 ...

  8. W3School-CSS 伪元素 (Pseudo-elements) 实例

    CSS 伪元素 (Pseudo-elements)实例 CSS 实例 CSS 背景实例 CSS 文本实例 CSS 字体(font)实例 CSS 边框(border)实例 CSS 外边距 (margin ...

  9. W3School-CSS 伪类 (Pseudo-classes) 实例

    CSS 伪类 (Pseudo-classes) 实例 CSS 实例 CSS 背景实例 CSS 文本实例 CSS 字体(font)实例 CSS 边框(border)实例 CSS 外边距 (margin) ...

随机推荐

  1. SuperSocket源码解析之会话生命周期

    一 基本概念 会话(Session)是客户端与服务器进行通信的基本单元,也是一个Socket的封装,在http协议中也有Session机制,其主要作用封装一个通信单元socket,负责服务器与客户端消 ...

  2. mysql 结合keepalived测试

    vip:192.168.32.66 192.168.32.6 主库: mysql> show variables like '%read_only%'; +------------------+ ...

  3. 基于visual Studio2013解决C语言竞赛题之0804成绩筛选

     题目

  4. Swift - 使用NSURLSession同步获取数据(通过添加信号量)

    过去通过 NSURLConnection.sendSynchronousRequest() 方法能同步请求数据.从iOS9起,苹果建议废除 NSURLConnection,使用 NSURLSessio ...

  5. perl malformed JSON string, neither tag, array, object, number, string or atom, at character offset

    [root@wx03 ~]# cat a17.pl use JSON qw/encode_json decode_json/ ; use Encode; my $data = [ { 'name' = ...

  6. Android 讲述Help提示框

    Android 讲述Help提示框 XML/HTML代码 <stringname="help_dialog_text"> <i>Author:fonter. ...

  7. iOS无处不在详解iOS集成第三方登录(SSO授权登录无需密码)

    链接地址:http://www.it165.net/pro/html/201408/18884.html 1.前言 不多说,第三登录无处不在!必备技能,今天以新浪微博为例. 这是上次写的iOS第三方社 ...

  8. (升级版)Spark从入门到精通(Scala编程、案例实战、高级特性、Spark内核源码剖析、Hadoop高端)

    本课程主要讲解目前大数据领域最热门.最火爆.最有前景的技术——Spark.在本课程中,会从浅入深,基于大量案例实战,深度剖析和讲解Spark,并且会包含完全从企业真实复杂业务需求中抽取出的案例实战.课 ...

  9. Basic4android:多功能的Android应用软件快速开发平台

    Basic4android 是目前最简单.最强大的Android平台快速应用开发工具. ( "Basic4android is the simplest and most powerful ...

  10. Swift - 使用Core Data进行数据持久化存储

    一,Core Data介绍 1,Core Data是iOS5之后才出现的一个数据持久化存储框架,它提供了对象-关系映射(ORM)的功能,即能够将对象转化成数据,也能够将保存在数据库中的数据还原成对象. ...