C / C++算法学习笔记(7)-双向冒泡
原始地址:双向冒泡
通常的冒泡是单向的,而这里是双向的,也就是说还要进行反向的工作。
代码看起来复杂,仔细理一下就明白了,是一个来回震荡的方式。
写这段代码的作者认为这样可以在冒泡的基础上减少一些交换(我不这么认为,也许我错了)。
反正我认为这是一段有趣的代码,值得一看。
#include <iostream.h>
void Bubble2Sort(int* pData,int Count)
{
int iTemp;
int left =1;
int right =Count -1;
int t;
do
{
//正向的部分
for(int i=right;i>=left;i--)
{
if(pData[i]<pData[i-1])
{
iTemp = pData[i];
pData[i] = pData[i-1];
pData[i-1] = iTemp;
t = i;
}
}
left = t+1; //反向的部分
for(i=left;i<right+1;i++)
{
if(pData[i]<pData[i-1])
{
iTemp = pData[i];
pData[i] = pData[i-1];
pData[i-1] = iTemp;
t = i;
}
}
right = t-1;
}while(left<=right);
} void main()
{
int data[] = {10,9,8,7,6,5,4};
Bubble2Sort(data,7);
for (int i=0;i<7;i++)
cout<<data[i]<<" ";
cout<<"/n";
}
C / C++算法学习笔记(7)-双向冒泡的更多相关文章
- C / C++算法学习笔记(8)-SHELL排序
原始地址:C / C++算法学习笔记(8)-SHELL排序 基本思想 先取一个小于n的整数d1作为第一个增量(gap),把文件的全部记录分成d1个组.所有距离为dl的倍数的记录放在同一个组中.先在各组 ...
- Manacher算法学习笔记 | LeetCode#5
Manacher算法学习笔记 DECLARATION 引用来源:https://www.cnblogs.com/grandyang/p/4475985.html CONTENT 用途:寻找一个字符串的 ...
- Johnson算法学习笔记
\(Johnson\)算法学习笔记. 在最短路的学习中,我们曾学习了三种最短路的算法,\(Bellman-Ford\)算法及其队列优化\(SPFA\)算法,\(Dijkstra\)算法.这些算法可以快 ...
- 某科学的PID算法学习笔记
最近,在某社团的要求下,自学了PID算法.学完后,深切地感受到PID算法之强大.PID算法应用广泛,比如加热器.平衡车.无人机等等,是自动控制理论中比较容易理解但十分重要的算法. 下面是博主学习过程中 ...
- Johnson 全源最短路径算法学习笔记
Johnson 全源最短路径算法学习笔记 如果你希望得到带互动的极简文字体验,请点这里 我们来学习johnson Johnson 算法是一种在边加权有向图中找到所有顶点对之间最短路径的方法.它允许一些 ...
- 算法学习笔记——sort 和 qsort 提供的快速排序
这里存放的是笔者在学习算法和数据结构时相关的学习笔记,记录了笔者通过网络和书籍资料中学习到的知识点和技巧,在供自己学习和反思的同时为有需要的人提供一定的思路和帮助. 从排序开始 基本的排序算法包括冒泡 ...
- R语言实现关联规则与推荐算法(学习笔记)
R语言实现关联规则 笔者前言:以前在网上遇到很多很好的关联规则的案例,最近看到一个更好的,于是便学习一下,写个学习笔记. 1 1 0 0 2 1 1 0 0 3 1 1 0 1 4 0 0 0 0 5 ...
- 二次剩余Cipolla算法学习笔记
对于同余式 \[x^2 \equiv n \pmod p\] 若对于给定的\(n, P\),存在\(x\)满足上面的式子,则乘\(n\)在模\(p\)意义下是二次剩余,否则为非二次剩余 我们需要计算的 ...
- SPFA算法学习笔记
一.理论准备 为了学习网络流,先水一道spfa. SPFA算法是1994年西南交通大学段凡丁提出,只要最短路径存在,SPFA算法必定能求出最小值,SPFA对Bellman-Ford算法优化的关键之处在 ...
随机推荐
- 技术不牛如何才拿到国内IT巨头的Offer(转)
不久前,byvoid面阿里星计划的面试结果截图泄漏,引起无数IT屌丝的羡慕敬仰.看看这些牛人,NOI金牌,开源社区名人,三年级开始写Basic...在跪拜之余我们不禁要想,和这些牛人比,作为绝大部分技 ...
- UML03-类图
1.在类图中,聚合关系表达总体与局部的关系. 2.请根据下面的需求,画出用例图和类图. 系统允许管理员通过磁盘加载存货数据来运行存货清单报告: 管理员通过从磁盘加载存货数据.向磁盘保存存货数据来更新存 ...
- @produces在spring mvc中是什么意思
@RequestMapping(value = "/produces", produces = "application/json"):表示将功能处理方法将生产 ...
- Solr4.2迁移到新项目下异常:java.lang.NoSuchMethodError: org.apache.http.conn.scheme.Scheme.<init>
由于业务调整,需要将solr搜索项目集成到另一个项目下成为一个模块,原项目运行异常,但是迁移到新项目后出现异常如下: 原因:引入的httpclient.jar冲突 解决方法:删除冲突的jar
- Study notes for B-tree and R-tree
B-tree B-tree is a tree data structure that keeps data sorted and allows searches, sequential access ...
- Java面试题精选(三) JSP/Servlet Java面试逻辑题
-- JSP/Servlet Java面试逻辑题 -- 很显然,Servlet/JSP的WEB前端动态制作的重要性比HTML/CSS/JS的价值高很多,但我们都知道他们都是建立在HT ...
- 安装m2eclipse
Help->Eclipse Marketplace- 搜索 maven 安装 Maven Integration for Eclipse
- Unknown database 'DB_NAME'
Cannot create PoolableConnectionFactory (Unknown database 'DB_NAME'): com.mysql.jdbc.exceptions.jdbc ...
- ios23- 文件下载(同步和异步)
1.第一步:创建一个单例视图 #import <UIKit/UIKit.h> @interface ios23_downViewController : UIViewController& ...
- (step6.3.3)hdu 1150(Machine Schedule——二分图的最小点覆盖数)
题目大意:第一行输入3个整数n,m,k.分别表示女生数(A机器数),男生数(B机器数),以及它们之间可能的组合(任务数). 在接下来的k行中,每行有3个整数c,a,b.表示任务c可以有机器A的a状态或 ...