属于结果的和好求但是结果不好求的题

(轻易能得到以k的倍数为最大公约数的对数,但是不好直接求k)

所以一波反演结束

其实反演的时候完全没有反演的感觉,就是不停地恒等变形

算是懵逼乌斯反演最简单的例题

 #include <bits/stdc++.h>
using namespace std;
int n,m,a,b,c,d,k,mu[],p[];bool o[];
int calc(int n,int m)
{
int ret=;if(n>m) swap(n,m);
for(int i=,j;i<=n;i=j+)
{
j=min(n/(n/i),m/(m/i));
ret+=(n/i)*(m/i)*(mu[j]-mu[i-]);
}
return ret;
}
int main()
{
scanf("%d",&n);
m=;mu[]=;
for(int i=;i<=;i++)
{
if(!o[i]) p[++m]=i,mu[i]=-;
for(int j=;j<=m;j++)
if(i*p[j]<=)
{
o[i*p[j]]=;
if(i%p[j]==) break;
mu[i*p[j]]=mu[i]*mu[p[j]];
}
else break;
}
for(int i=;i<=;i++)
mu[i]+=mu[i-];
for(int i=;i<=n;i++)
{
scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
a=(a-)/k;b/=k;c=(c-)/k;d/=k;
printf("%d\n",calc(b,d)-calc(b,c)-calc(a,d)+calc(a,c));
}
return ;
}

改天(老是拖延。。。)总结一下懵逼乌斯反演相关知识点

bzoj2301: [HAOI2011]Problem b懵逼乌斯反演的更多相关文章

  1. BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 4032  Solved: 1817[Submit] ...

  2. 莫(meng)比(bi)乌斯反演--BZOJ2301: [HAOI2011]Problem b

    n<=50000个询问,每次问a<=x<=b,c<=y<=d中有多少gcd(x,y)=K的(x,y).a,b,c,d,K<=50000. 这大概是入门题辣..这里记 ...

  3. bzoj2301 [HAOI2011]Problem b【莫比乌斯反演 分块】

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=2301 很好的一道题.首先把每个询问转化为4个子询问,最后的结果就是这四个子询问的记过加加减减 ...

  4. BZOJ2301: [HAOI2011]Problem b 莫比乌斯反演

    分析:对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 然后对于求这样单个的gcd(x,y)=k的, ...

  5. Bzoj-2301 [HAOI2011]Problem b 容斥原理,Mobius反演,分块

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2301 题意:多次询问,求有多少对数满足 gcd(x,y)=k, a<=x<=b ...

  6. 【数论】【莫比乌斯反演】【线性筛】bzoj2301 [HAOI2011]Problem b

    对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 100%的数据满足:1≤n≤50000,1≤a≤b ...

  7. [bzoj2301][HAOI2011]Problem B —— 莫比乌斯反演+容斥原理

    题意 给定a, b, c, d, k,求出: \[\sum_{i=a}^b\sum_{j=c}^d[gcd(i, j) = k]\] 题解 为方便表述,我们设 \[calc(\alpha, \beta ...

  8. [luogu2522][bzoj2301][HAOI2011]Problem b【莫比乌斯反演】

    传送门:https://www.luogu.org/problemnew/show/P2522 题目描述 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y ...

  9. BZOJ2301:[HAOI2011]Problem b(莫比乌斯反演,容斥)

    Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数 ...

随机推荐

  1. Python开发环境Wing IDE使用教程:部分调试功能介绍

    下面是用户应该了解的Wing IDE的其它一些调试功能: Main Debug File—用户可以指定项目中的一个文件作为调试的主入口点.当完成这个设置之后,调试总是从这个文件开始,除非用户使用Deb ...

  2. 《Programming Hive》读书笔记(两)Hive基础知识

    <Programming Hive>读书笔记(两)Hive基础知识 :第一遍读是浏览.建立知识索引,由于有些知识不一定能用到,知道就好.感兴趣的部分能够多研究. 以后用的时候再具体看.并结 ...

  3. Ubuntu开启NFS,挂载根目录

    1.安装NFS server Ubuntu初始状态是没有NFS server的,首先要安装NFS server: $ sudo apt-get install nfs-kernel-server (安 ...

  4. SAX解析xml浅析

    SAX解析XML文件采用事件驱动的方式进行,也就是说,SAX是逐行扫描文件,遇到符合条件的设定条件后就会触发特定的事件,回调你写好的事件处理程序.使用SAX的优势在于其解析速度较快,占用内存较少(相对 ...

  5. 大IT公司笔试

    都是一些非常非常基础的题,是我最近参加各大IT公司笔试后靠记忆记下来的,经过整理献给与我一样参加各大IT校园招聘的同学们,纯考Java基础功底,老手们就不用进来了,免得笑话我们这些未出校门的孩纸们,但 ...

  6. C语言可变参数函数的编写

    1. 引言 C语言我们接触的第一个库函数是 printf(“hello,world!”);其参数个数为1个. 然后,我们会接触到诸如: printf(“a=%d,b=%s,c=%c”,a,b,c);此 ...

  7. macvim打造python IDE

    昨天安装了macvim,今天在上面配置了一下python的ide: 大家也可参考http://blog.dispatched.ch/2009/05/24/vim-as-python-ide/ 1.文法 ...

  8. No CurrentSessionContext configured 异常解决

    Exception in thread "main" org.hibernate.HibernateException: No CurrentSessionContext conf ...

  9. 让MyEclipse里的Tomcat自动reloadable

    1  修改server.xml Context path="/***" docBase="XXX" reloadable="true"/&g ...

  10. ASP.NET Web安装程序

    键发布ASP.NET Web安装程序,搞WebForm的童鞋看过来... 前言:最近公司有个Web要发布,但是以前都是由实施到甲方去发布,配置,这几天有点闲,同事让我搞一个一键发布,就和安装软件那样的 ...