题目链接

Statement

给定一棵 \(n\) 点树 \(T\) 和 \(m\) 个操作 v u w

  • 在 \(T\) 中 \(u,v\) 的最短路上所有点里面选出若干对(可以不选,可以重复),在每一对之间加边,花费为 \(w\) .
  • 有 \(p\) 个限制 t a b ,表示第 \(t\) 次不能在 \(a,b\) 之间加边,保证 \(a,b\) 在 \(u,v\) 的路径上且无重复。

求所有加的边形成 \(n\) 点连通图的最小代价。 \(n,m,p\leq 3e5\) .

Solution

一开始看错题了

一个显然的想法是,把每一天按照 \(w\) 升序,然后每次尽可能多地合并连通块。

有一个显然的性质: 对于第 \(i\) 天,设当天有 \(num\) 个限制,如果 \(dis(u,v)>num\) ,那么这一条路径上的所有点之间都能连通,且必须连通

Proof

长度是 \(dis(u,v)\) ,点数就是 \(dis(u,v)+1\) .既然 \(dis(u,v)\) 比 \(num\) 大,那么就算一个点包揽了 \(num\) 个限制,也至少能向一个点连边,这样就一定可以使得路径上所有点连通。而由于我们是将每一次操作按 \(w\) 升序的,所以这一次将它连边一定不会比后面再做劣,因此这种情况下,第 \(i\) 次做完之后一定是 \(path(u,v)\) 全部连通。

那么对于满足这个性质的情况,直接连就好了,反正连完就是同一个连通块。(网上题解为啥说的是能直接连边啊……虽然是等价的)

现在来考虑 \(dis(u,v)\leq num\) 的情况。

首先,对于 \(t\) 的所有限制,建立一个子图 \(g\) ,并暴力把 \(u\to v\) 路径上的所有点都存下来,设为 \(path[]\) .令 \(t\) 的限制个数为 \(k\) .

然后,选取一个度数最小的点 \(x\) ,将路径上的点集分成两类:\(V_1\) 中的点在限制子图中和 \(x\) 相邻,\(V_2\) 反之。

显然,对于 \(V_2\) 的点,直接和 \(x\) 连边就好了。

对于 \(V_1\) 中的点 \(y\) ,如果 \(deg[y]<|V_2|\) (这里的度数是和 \(V_2\) 的度数),那么至少能和 \(V_2\) 中一个点连边,直接加边即可。复杂度 \(\mathcal{O}(\sum_y deg[y])=\mathcal{O}(k)\) .

否则,暴力枚举 \(V_1\) 中的点,尝试两两连边。由于度数最小所以 \(deg[x]\) 是根号级别的,复杂度 \(\mathcal{O}(k)\) .

所以总体复杂度是 \(\mathcal{O}(n\log n)\) (同级复杂度),瓶颈在于排序。

Code

//Author: RingweEH
const int N=3e5+10;
struct Date
{
int u,v,w,t;
bool operator < ( const Date &tmp ) const { return w<tmp.w; }
}a[N];
struct DSU
{
int fa[N];
int find( int x ) { return x==fa[x] ? x : fa[x]=find(fa[x]); }
DSU() { for ( int i=1; i<=N-10; i++ ) fa[i]=i; }
}D1,D2;
int n,m,k,fa[N],dep[N];
ll ans=0;
bool vis[N];
vector<Date> restr[N];
vector<int> g[N];
stack<Date> sta; bool Check_Length( int u,int v,int num ) //判断dis(u,v)的长度和限制个数的大小关系
{
while ( num-- )
{
if ( dep[u]>dep[v] ) swap( u,v );
v=fa[v];
if ( u==v ) return 0;
}
return 1;
} void Merge( int u,int v,int w )
{
u=D2.find( u ); v=D2.find( v );
if ( u!=v ) D2.fa[v]=u,ans+=w;
} void Add( int u,int v )
{
g[u].push_back( v ); g[v].push_back( u );
Date tmp; tmp.u=u; tmp.v=v; tmp.w=tmp.t=0; sta.push( tmp );
} void Clear( int u=0,int v=0 )
{
while ( !sta.empty() )
{
u=sta.top().u; v=sta.top().v; sta.pop();
g[u].clear(); g[v].clear();
}
} int path[N],lenth; void Get_Path( int u,int v )
{
lenth=0; bool fl=0;
do
{
fl=(u==v);
if ( dep[u]>dep[v] ) swap( u,v );
path[++lenth]=v; v=fa[v];
} while ( !fl );
} int main()
{
n=read(); m=read(); k=read();
for ( int i=2; i<=n; i++ )
fa[i]=read(),dep[i]=dep[fa[i]]+1;
for ( int i=1; i<=m; i++ )
a[i].u=read(),a[i].v=read(),a[i].w=read(),a[i].t=i;
for ( int i=1,u,v,t; i<=k; i++ )
t=read(),u=read(),v=read(),restr[t].push_back( (Date){u,v,0,0} ); sort( a+1,a+1+m );
for ( int i=1; i<=m; i++ )
{
int u=a[i].u,v=a[i].v,w=a[i].w,t=a[i].t;
if ( Check_Length(u,v,restr[t].size()) ) //满足性质
{
u=D1.find( u ); v=D1.find( v );
while ( u^v )
{
if ( dep[u]>dep[v] ) swap( u,v );
Merge( v,fa[v],w ); D1.fa[v]=fa[v]; v=D1.find( v );
}
}
else
{
for ( Date j : restr[t] )
Add( j.u,j.v ); //对于限制建子图
Get_Path( u,v ); int mn=path[1];
for ( int j=2; j<=lenth; j++ ) //找度数最小的点
if ( g[path[j]].size()<g[mn].size() ) mn=path[j];
for ( int j : g[mn] ) //标记相邻点
vis[j]=1;
for ( int j=1; j<=lenth; j++ ) //x & V2
if ( !vis[path[j]] ) Merge( mn,path[j],w );
for ( int j : g[mn] )
{
int sum=0;
for ( int p : g[j] )
sum+=vis[p];
if ( g[j].size()-sum-1<lenth-g[mn].size()-1 ) Merge( j,mn,w );
//deg[y]<|V2|
}
for ( int j : g[mn] )
vis[j]=0;
for ( int j : g[mn] )
{
for ( int p : g[j] )
vis[p]=1;
for ( int p : g[mn] ) //V1中两两尝试连边
if ( !vis[p] ) Merge( j,p,w );
for ( int p : g[j] )
vis[p]=0;
}
Clear();
}
} printf( "%lld\n",ans ); return 0;
}

UOJ61. 【UR #5】怎样更有力气的更多相关文章

  1. 【UOJ#61】【UR #5】怎样更有力气(最小生成树)

    [UOJ#61][UR #5]怎样更有力气(最小生成树) 题面 UOJ 题解 最最最暴力的想法是把所有边给处理出来然后跑\(MST\). 考虑边权的情况,显然离线考虑,把么一天按照\(w_i\)进行排 ...

  2. 「UR#5」怎样更有力气

    「UR#5」怎样更有力气 解题思路 考虑没有限制的情况,一定是把操作离线下来,按照边权从小到达做.可以发现,如果没有限制,完全图是多余的,直接拿树边进行合并就可以了.我们要做这么一件事情,把每个点属于 ...

  3. UOJ#61. 【UR #5】怎样更有力气

    大力水手问禅师:“大师,很多事情都需要用很大力气才能完成,而我在吃了菠菜之后力气很大,于是就导致我现在非常依赖菠菜.我很讨厌我的现状,有没有办法少吃点菠菜甚至不吃菠菜却仍很有力气?” 禅师浅笑,答:“ ...

  4. YYHS-怎样更有力气

    题目描述 OI大师抖儿在夺得银牌之后,顺利保送pku.这一天,抖儿问长者:"我虽然已经保送了,但我的志向是为国家健康工作五十年.请问我应该怎样变得更有力气?"  长者回答:&quo ...

  5. 【NOIP2017练习】怎样更有力气(二分答案,线性扫描)

    题意:OI大师抖儿在夺得银牌之后,顺利保送pku.这一天,抖儿问长者:“我虽然已经保送了,但我的志向是为国家健康工作五十年.请问我应该怎样变得更有力气?”   长者回答:“你啊,Too Young T ...

  6. 【UR #5】怎样更有力气

    Problem Description 大力水手问禅师:"大师,很多事情都需要用很大力气才能完成,而我在吃了菠菜之后力气很大,于是就导致我现在非常依赖菠菜.我很讨厌我的现状,有没有办法少吃点 ...

  7. [UOJ61]怎样更有力气

    这个题还是挺有意思的... 一个小结论是:在一个$n$点$m$边的图中,如果度数最小的点度数为$d$,那么$d^2=O(m)$,因为$d\leq\frac{2m}n$,所以$d^2\leq dn\le ...

  8. 校际联合Contest

    每次开一个坑都像是重新被碾压的预感 最近的新闻,以前很喜欢乔任梁的<复活>...然后他就死了...感觉我再多愁善感一点的话...就要悲伤逆流成河了吧... Contest 09/24(乐滋 ...

  9. 如何编写高质量的 jQuery 代码?

    想必大家对于jQuery这个最流行的javascript类库都不陌生,而且只要是前端开发人员肯定或多或少的使用或者接触过,在今天的这篇文章中,我们将介绍一些书写高质量jQuery代码的原则,我们不单单 ...

随机推荐

  1. 利用日志文件getshell

    一.包含日志文件漏洞利用概述           当我们没有上传点,并且也没有url_allow_include功能时,我们就可以考虑包含服务器的日志文件.        利用思路也比较简单,当我们访 ...

  2. Spring源码之事务(一)— TransactionAutoConfiguration自动配置

    总结: 在ConfigurationClassParser#parse()中会对deferredImportSelectorHandler进行处理(在处理@ComponentScan 自己所写@Com ...

  3. Debian 64位内核升级步骤

    安装相关依赖包 apt-get install bzip2 libncurses5-dev kernel-package zlib1g-dev gcc make kernel-package wget ...

  4. Appium常用操作之「Toast提示信息获取」

    坚持原创输出,点击蓝字关注我吧 作者:清菡 博客:Oschina.云+社区.知乎等各大平台都有. 目录 一.什么是 Toast 二.获取 Toast 提示信息的前提 1.针对这种元素,有的时候我们需要 ...

  5. php openssl 加密解密

    $config = array( "digest_alg" => "sha512", "private_key_bits" => ...

  6. 原生javascript包装一个ajax方法

    调用AJAX 1 <script type="text/javascript" src="ajax.js"></script> 2 &l ...

  7. 一次看完28个关于ES的性能调优技巧,很赞,值得收藏!

    因为总是看到很多同学在说Elasticsearch性能不够好.集群不够稳定,询问关于Elasticsearch的调优,但是每次都是一个个点的单独讲,很多时候都是case by case的解答,本文简单 ...

  8. 使用Camtasia制作游戏直播高能短视频

    随着电竞行业的兴起,很多主播都开始做起游戏直播.对于喜欢打游戏的朋友来说,观看游戏直播既可以提高游戏的技术,也能作为下班后的休闲娱乐.对于喜欢钻研游戏技术的朋友,制作一个游戏高能合集能也是一件很燃的事 ...

  9. Java基础教程——枚举类型

    枚举类型 枚举类型在JDK 5时引入. enum WeekEnum { MONDAY, TUESDAY, WEDNESDAY, THURDAY, FRIDAY, SATURDAY, SUNDAY } ...

  10. 【问题记录】— web页面调用本地程序

    起因: 最近由于项目需要在web页面中调用本地部署的exe程序:进而对该功能实现做了对应了解:以及存在的问题进行记录. 要实现该功能就不得不说浏览器自定义协议:解决办法:那么它是什么呢? 浏览器自定义 ...