在读技术博客的过程中,我们会发现那些能够把知识、成果讲透的博主很多都会做动态图表。他们的图是怎么做的?难度大吗?这篇文章就介绍了 Python 中一种简单的动态图表制作方法。

看这优美的舞姿

很多人学习python,不知道从何学起。
很多人学习python,掌握了基本语法过后,不知道在哪里寻找案例上手。
很多已经做案例的人,却不知道如何去学习更加高深的知识。
那么针对这三类人,我给大家提供一个好的学习平台,免费领取视频教程,电子书籍,以及课程的源代码!
QQ群:1097524789

数据暴增的年代,数据科学家、分析师在被要求对数据有更深的理解与分析的同时,还需要将结果有效地传递给他人。 如何让目标听众更直观地理解? 当然是将数据可视化啊,而且最 好是动态可视化。

本文将以线型图、条形图和饼图为例,系统地讲解如何让你的数据图表动起来 。

这些动态图表是用什么做的?

接触过数据可视化的同学应该对 Python 里的 Matplotlib 库并不陌生。它是一个基于 Python 的开源数据绘图包,仅需几行代码就可以帮助开发者生成直方图、功率谱、条形图、散点图等。这个库里有个非常实用的扩展包——FuncAnimation,可以让我们的静态图表动起来。

FuncAnimation 是 Matplotlib 库中 Animation 类的一部分,后续会展示多个示例。如果是首次接触,你可以将这个函数简单地理解为一个 While 循环,不停地在 “画布” 上重新绘制目标数据图。

如何使用 FuncAnimation?

这个过程始于以下两行代码:

import matplotlib.animation as ani

animator = ani.FuncAnimation(fig, chartfunc, interval = 100)

从中我们可以看到 FuncAnimation 的几个输入:

  • fig 是用来 「绘制图表」的 figure 对象;

  • chartfunc 是一个以数字为输入的函数,其含义为时间序列上的时间;

  • interval 这个更好理解,是帧之间的间隔延迟,以毫秒为单位,默认值为 200。

这是三个关键输入,当然还有更多可选输入,感兴趣的读者可查看原文档,这里不再赘述。

下一步要做的就是将数据图表参数化,从而转换为一个函数,然后将该函数时间序列中的点作为输入,设置完成后就可以正式开始了。

在开始之前依旧需要确认你是否对基本的数据可视化有所了解。也就是说,我们先要将数据进行可视化处理,再进行动态处理。

按照以下代码进行基本调用。另外,这里将采用大型流行病的传播数据作为案例数据(包括每天的死亡人数)。

import matplotlib.animation as ani
import matplotlib.pyplot as plt
import numpy as np
import pandas as pdurl = 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_deaths_global.csv'
df = pd.read_csv(url, delimiter=',', header='infer')df_interest = df.loc[
df['Country/Region'].isin(['United Kingdom', 'US', 'Italy', 'Germany'])
& df['Province/State'].isna()]df_interest.rename(
index=lambda x: df_interest.at[x, 'Country/Region'], inplace=True)
df1 = df_interest.transpose()df1 = df1.drop(['Province/State', 'Country/Region', 'Lat', 'Long'])
df1 = df1.loc[(df1 != 0).any(1)]
df1.index = pd.to_datetime(df1.index)

绘制三种常见动态图表

绘制动态线型图

如下所示,首先需要做的第一件事是定义图的各项,这些基础项设定之后就会保持不变。它们包括:创建 figure 对象,x 标和 y 标,设置线条颜色和 figure 边距等:

import numpy as np
import matplotlib.pyplot as pltcolor = ['red', 'green', 'blue', 'orange']
fig = plt.figure()
plt.xticks(rotation=45, ha="right", rotation_mode="anchor") #rotate the x-axis values
plt.subplots_adjust(bottom = 0.2, top = 0.9) #ensuring the dates (on the x-axis) fit in the screen
plt.ylabel('No of Deaths')
plt.xlabel('Dates')

接下来设置 curve 函数,进而使用 .FuncAnimation 让它动起来:

def buildmebarchart(i=int):
plt.legend(df1.columns)
p = plt.plot(df1[:i].index, df1[:i].values) #note it only returns the dataset, up to the point i
for i in range(0,4):
p[i].set_color(color[i]) #set the colour of each curveimport matplotlib.animation as ani
animator = ani.FuncAnimation(fig, buildmebarchart, interval = 100)
plt.show()

动态饼状图

可以观察到,其代码结构看起来与线型图并无太大差异,但依旧有细小的差别。

import numpy as np
import matplotlib.pyplot as pltfig,ax = plt.subplots()
explode=[0.01,0.01,0.01,0.01] #pop out each slice from the piedef getmepie(i):
def absolute_value(val): #turn % back to a number
a = np.round(val/100.*df1.head(i).max().sum(), 0)
return int(a)
ax.clear()
plot = df1.head(i).max().plot.pie(y=df1.columns,autopct=absolute_value, label='',explode = explode, shadow = True)
plot.set_title('Total Number of Deaths\n' + str(df1.index[min( i, len(df1.index)-1 )].strftime('%y-%m-%d')), fontsize=12)import matplotlib.animation as ani
animator = ani.FuncAnimation(fig, getmepie, interval = 200)
plt.show()

主要区别在于,动态饼状图的代码每次循环都会返回一组数值,但在线型图中返回的是我们所在点之前的整个时间序列。返回时间序列通过 df1.head(i) 来实现,而. max()则保证了我们仅获得最新的数据,因为流行病导致死亡的总数只有两种变化:维持现有数量或持续上升。

df1.head(i).max()

动态条形图

创建动态条形图的难度与上述两个案例并无太大差别。在这个案例中,作者定义了水平和垂直两种条形图,读者可以根据自己的实际需求来选择图表类型并定义变量栏。

fig = plt.figure()
bar = ''def buildmebarchart(i=int):
iv = min(i, len(df1.index)-1) #the loop iterates an extra one time, which causes the dataframes to go out of bounds. This was the easiest (most lazy) way to solve this :)
objects = df1.max().index
y_pos = np.arange(len(objects))
performance = df1.iloc[[iv]].values.tolist()[0]
if bar == 'vertical':
plt.bar(y_pos, performance, align='center', color=['red', 'green', 'blue', 'orange'])
plt.xticks(y_pos, objects)
plt.ylabel('Deaths')
plt.xlabel('Countries')
plt.title('Deaths per Country \n' + str(df1.index[iv].strftime('%y-%m-%d')))
else:
plt.barh(y_pos, performance, align='center', color=['red', 'green', 'blue', 'orange'])
plt.yticks(y_pos, objects)
plt.xlabel('Deaths')
plt.ylabel('Countries')animator = ani.FuncAnimation(fig, buildmebarchart, interval=100)plt.show()

在制作完成后,存储这些动态图就非常简单了,可直接使用以下代码:

animator.save(r'C:\temp\myfirstAnimation.gif')

感兴趣的读者如想获得详细信息可参考:https://matplotlib.org/3.1.1/api/animation_api.html。

用Python绘制一套“会跳舞”的动态图形给你看看的更多相关文章

  1. Python 绘制你想要的数学函数图形

    Python 非常热门,但除非工作需要没有刻意去了解更多,直到有个函数图要绘制,想起了它.结果发现,完全用不着明白什么是编程,就可以使用它完成很多数学函数图的绘制. 通过以下两个步骤,就可以进行数学函 ...

  2. Python绘制PDF文件~超简单的小程序

    Python绘制PDF文件 项目简介 这次项目很简单,本次项目课,代码不超过40行,主要是使用 urllib和reportlab模块,来生成一个pdf文件. reportlab官方文档 http:// ...

  3. Python绘制3d螺旋曲线图实例代码

    Axes3D.plot(xs, ys, *args, **kwargs) 绘制2D或3D数据 参数 描述 xs, ys X轴,Y轴坐标定点 zs Z值,每一个点的值都是1 zdir 绘制2D集合时使用 ...

  4. python 绘制柱状图

    python 绘制柱状图 import matplotlib.pyplot as plt import numpy as np # 创建一个点数为 8 x 6 的窗口, 并设置分辨率为 80像素/每英 ...

  5. 运用python绘制小猪佩奇

    用python绘制小猪佩奇 1.打开idle 2.点击File-New Files 3.输入以下代码 1. from turtle import * 2. 3. def nose(x,y):#鼻子 4 ...

  6. 使用python绘制根轨迹图

    最近在学自动控制原理,发现根轨迹这一张全是绘图的,然而书上教的全是使用matlab进行计算机辅助绘图.但国内对于使用python进行这种绘图的资料基本没有,后来发现python-control包已经将 ...

  7. ROC,AUC,PR,AP介绍及python绘制

    这里介绍一下如题所述的四个概念以及相应的使用python绘制曲线: 参考博客:http://kubicode.me/2016/09/19/Machine%20Learning/AUC-Calculat ...

  8. Python绘制奥运五环

    绘制奥运五环主要涉及到Python中的turtle绘图库运用: turtle.forward(distance) 向当前画笔方向移动distance像素长度 turtle.backward(dista ...

  9. Python 3 udp 套接字

    Python 3 udp套接字 TCP是建立可靠连接,并且通信双方都可以以流的形式发送数据.相对TCP,UDP则是面向无连接的协议 使用UDP协议时,不需要建立连接,只需要知道对方的IP地址和端口号, ...

随机推荐

  1. python数据处理(五)之数据清洗:研究、匹配与格式化

    1 前言 保持数据格式一致以及可读,否则数据不可能正确合并 清洗数据的过程中记下清洗过程的每一步,方便数据回溯以及过程复用 2 数据清洗基础知识 2.1 找出需要清洗的数据 仔细观察文件,观察数据字段 ...

  2. vscode切换虚拟环境报错无法加载文件 E:\Python_project\shop_env\Scripts\Activate.ps1,因为在此系统上禁止运行 脚本。

    在使用vscode切换python的虚拟环境时报错 解决方法如下: Windows+x打开面板,选择以管理员身份运行PowerShell,输入: set-executionpolicy remotes ...

  3. Azure Web App (三)切换你的Net Core Web 项目的数据库连接字符串

    一,引言 上一篇文章讲到今天我们演示了一下,如何在Web App中创建 “Deployment Slot”进行快速无停机部署新功能代码,也使用VS进行发布到创建的Web App中创建的新的部署槽位中, ...

  4. Java常用API(Scanner类)

    Java常用API( Scanner类)1 1.Scanner类 首先给大家介绍一下什么是JavaAPI API(Application Programming Interface),应用程序编程接口 ...

  5. OSCP Learning Notes - Capstone(4)

    SickOS 1.2 Walkthrough Preparation: Down load the SickOS virtual machines from the following website ...

  6. kubernetes系列(十七) - 通过helm安装dashboard详细教程

    1. 前提条件 2. 配置https证书为secret 3. dashboard安装 3.1 helm拉取dashboard的chart 3.2 配置dashboard的chart包配置 3.3 he ...

  7. 【软件安装】CentOS7安装Tengine_2_3_2(Nginx 1_17_0)

    简单比较一下Tengine 和Nginx 背景 使用最新的软件,可以处理一些bug,文章对CentOS6不做介绍(不会用) 推荐使用Tengine,理由是淘宝再用,兼容 Nginx 可以随时切换 Te ...

  8. 从一次故障聊聊前端 UI 自动化测试

    背景 事件的起因在于老板最近的两次"故障",一次去年的,一次最近.共同原因都是脚手架在发布平台发布打包时出错,导致线上应用白屏不可用. 最神奇的是,事后多次 Code Review ...

  9. Linux安装禅道项目管理软件

    1.从官网上面下载禅道的rpm文件 #wget http://dl.cnezsoft.com/zentao/7.1/zentaopms-7.1.stable-1.noarch.rpm 2.用指令安装 ...

  10. 基于Python爬虫采集天气网实时信息

      相信小伙伴们都知道今冬以来范围最广.持续时间最长.影响最重的一场低温雨雪冰冻天气过程正在进行中.预计,今天安徽.江苏.浙江.湖北.湖南等地有暴雪,局地大暴雪,新增积雪深度4-8厘米,局地可达10- ...