在读技术博客的过程中,我们会发现那些能够把知识、成果讲透的博主很多都会做动态图表。他们的图是怎么做的?难度大吗?这篇文章就介绍了 Python 中一种简单的动态图表制作方法。

看这优美的舞姿

很多人学习python,不知道从何学起。
很多人学习python,掌握了基本语法过后,不知道在哪里寻找案例上手。
很多已经做案例的人,却不知道如何去学习更加高深的知识。
那么针对这三类人,我给大家提供一个好的学习平台,免费领取视频教程,电子书籍,以及课程的源代码!
QQ群:1097524789

数据暴增的年代,数据科学家、分析师在被要求对数据有更深的理解与分析的同时,还需要将结果有效地传递给他人。 如何让目标听众更直观地理解? 当然是将数据可视化啊,而且最 好是动态可视化。

本文将以线型图、条形图和饼图为例,系统地讲解如何让你的数据图表动起来 。

这些动态图表是用什么做的?

接触过数据可视化的同学应该对 Python 里的 Matplotlib 库并不陌生。它是一个基于 Python 的开源数据绘图包,仅需几行代码就可以帮助开发者生成直方图、功率谱、条形图、散点图等。这个库里有个非常实用的扩展包——FuncAnimation,可以让我们的静态图表动起来。

FuncAnimation 是 Matplotlib 库中 Animation 类的一部分,后续会展示多个示例。如果是首次接触,你可以将这个函数简单地理解为一个 While 循环,不停地在 “画布” 上重新绘制目标数据图。

如何使用 FuncAnimation?

这个过程始于以下两行代码:

import matplotlib.animation as ani

animator = ani.FuncAnimation(fig, chartfunc, interval = 100)

从中我们可以看到 FuncAnimation 的几个输入:

  • fig 是用来 「绘制图表」的 figure 对象;

  • chartfunc 是一个以数字为输入的函数,其含义为时间序列上的时间;

  • interval 这个更好理解,是帧之间的间隔延迟,以毫秒为单位,默认值为 200。

这是三个关键输入,当然还有更多可选输入,感兴趣的读者可查看原文档,这里不再赘述。

下一步要做的就是将数据图表参数化,从而转换为一个函数,然后将该函数时间序列中的点作为输入,设置完成后就可以正式开始了。

在开始之前依旧需要确认你是否对基本的数据可视化有所了解。也就是说,我们先要将数据进行可视化处理,再进行动态处理。

按照以下代码进行基本调用。另外,这里将采用大型流行病的传播数据作为案例数据(包括每天的死亡人数)。

import matplotlib.animation as ani
import matplotlib.pyplot as plt
import numpy as np
import pandas as pdurl = 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_deaths_global.csv'
df = pd.read_csv(url, delimiter=',', header='infer')df_interest = df.loc[
df['Country/Region'].isin(['United Kingdom', 'US', 'Italy', 'Germany'])
& df['Province/State'].isna()]df_interest.rename(
index=lambda x: df_interest.at[x, 'Country/Region'], inplace=True)
df1 = df_interest.transpose()df1 = df1.drop(['Province/State', 'Country/Region', 'Lat', 'Long'])
df1 = df1.loc[(df1 != 0).any(1)]
df1.index = pd.to_datetime(df1.index)

绘制三种常见动态图表

绘制动态线型图

如下所示,首先需要做的第一件事是定义图的各项,这些基础项设定之后就会保持不变。它们包括:创建 figure 对象,x 标和 y 标,设置线条颜色和 figure 边距等:

import numpy as np
import matplotlib.pyplot as pltcolor = ['red', 'green', 'blue', 'orange']
fig = plt.figure()
plt.xticks(rotation=45, ha="right", rotation_mode="anchor") #rotate the x-axis values
plt.subplots_adjust(bottom = 0.2, top = 0.9) #ensuring the dates (on the x-axis) fit in the screen
plt.ylabel('No of Deaths')
plt.xlabel('Dates')

接下来设置 curve 函数,进而使用 .FuncAnimation 让它动起来:

def buildmebarchart(i=int):
plt.legend(df1.columns)
p = plt.plot(df1[:i].index, df1[:i].values) #note it only returns the dataset, up to the point i
for i in range(0,4):
p[i].set_color(color[i]) #set the colour of each curveimport matplotlib.animation as ani
animator = ani.FuncAnimation(fig, buildmebarchart, interval = 100)
plt.show()

动态饼状图

可以观察到,其代码结构看起来与线型图并无太大差异,但依旧有细小的差别。

import numpy as np
import matplotlib.pyplot as pltfig,ax = plt.subplots()
explode=[0.01,0.01,0.01,0.01] #pop out each slice from the piedef getmepie(i):
def absolute_value(val): #turn % back to a number
a = np.round(val/100.*df1.head(i).max().sum(), 0)
return int(a)
ax.clear()
plot = df1.head(i).max().plot.pie(y=df1.columns,autopct=absolute_value, label='',explode = explode, shadow = True)
plot.set_title('Total Number of Deaths\n' + str(df1.index[min( i, len(df1.index)-1 )].strftime('%y-%m-%d')), fontsize=12)import matplotlib.animation as ani
animator = ani.FuncAnimation(fig, getmepie, interval = 200)
plt.show()

主要区别在于,动态饼状图的代码每次循环都会返回一组数值,但在线型图中返回的是我们所在点之前的整个时间序列。返回时间序列通过 df1.head(i) 来实现,而. max()则保证了我们仅获得最新的数据,因为流行病导致死亡的总数只有两种变化:维持现有数量或持续上升。

df1.head(i).max()

动态条形图

创建动态条形图的难度与上述两个案例并无太大差别。在这个案例中,作者定义了水平和垂直两种条形图,读者可以根据自己的实际需求来选择图表类型并定义变量栏。

fig = plt.figure()
bar = ''def buildmebarchart(i=int):
iv = min(i, len(df1.index)-1) #the loop iterates an extra one time, which causes the dataframes to go out of bounds. This was the easiest (most lazy) way to solve this :)
objects = df1.max().index
y_pos = np.arange(len(objects))
performance = df1.iloc[[iv]].values.tolist()[0]
if bar == 'vertical':
plt.bar(y_pos, performance, align='center', color=['red', 'green', 'blue', 'orange'])
plt.xticks(y_pos, objects)
plt.ylabel('Deaths')
plt.xlabel('Countries')
plt.title('Deaths per Country \n' + str(df1.index[iv].strftime('%y-%m-%d')))
else:
plt.barh(y_pos, performance, align='center', color=['red', 'green', 'blue', 'orange'])
plt.yticks(y_pos, objects)
plt.xlabel('Deaths')
plt.ylabel('Countries')animator = ani.FuncAnimation(fig, buildmebarchart, interval=100)plt.show()

在制作完成后,存储这些动态图就非常简单了,可直接使用以下代码:

animator.save(r'C:\temp\myfirstAnimation.gif')

感兴趣的读者如想获得详细信息可参考:https://matplotlib.org/3.1.1/api/animation_api.html。

用Python绘制一套“会跳舞”的动态图形给你看看的更多相关文章

  1. Python 绘制你想要的数学函数图形

    Python 非常热门,但除非工作需要没有刻意去了解更多,直到有个函数图要绘制,想起了它.结果发现,完全用不着明白什么是编程,就可以使用它完成很多数学函数图的绘制. 通过以下两个步骤,就可以进行数学函 ...

  2. Python绘制PDF文件~超简单的小程序

    Python绘制PDF文件 项目简介 这次项目很简单,本次项目课,代码不超过40行,主要是使用 urllib和reportlab模块,来生成一个pdf文件. reportlab官方文档 http:// ...

  3. Python绘制3d螺旋曲线图实例代码

    Axes3D.plot(xs, ys, *args, **kwargs) 绘制2D或3D数据 参数 描述 xs, ys X轴,Y轴坐标定点 zs Z值,每一个点的值都是1 zdir 绘制2D集合时使用 ...

  4. python 绘制柱状图

    python 绘制柱状图 import matplotlib.pyplot as plt import numpy as np # 创建一个点数为 8 x 6 的窗口, 并设置分辨率为 80像素/每英 ...

  5. 运用python绘制小猪佩奇

    用python绘制小猪佩奇 1.打开idle 2.点击File-New Files 3.输入以下代码 1. from turtle import * 2. 3. def nose(x,y):#鼻子 4 ...

  6. 使用python绘制根轨迹图

    最近在学自动控制原理,发现根轨迹这一张全是绘图的,然而书上教的全是使用matlab进行计算机辅助绘图.但国内对于使用python进行这种绘图的资料基本没有,后来发现python-control包已经将 ...

  7. ROC,AUC,PR,AP介绍及python绘制

    这里介绍一下如题所述的四个概念以及相应的使用python绘制曲线: 参考博客:http://kubicode.me/2016/09/19/Machine%20Learning/AUC-Calculat ...

  8. Python绘制奥运五环

    绘制奥运五环主要涉及到Python中的turtle绘图库运用: turtle.forward(distance) 向当前画笔方向移动distance像素长度 turtle.backward(dista ...

  9. Python 3 udp 套接字

    Python 3 udp套接字 TCP是建立可靠连接,并且通信双方都可以以流的形式发送数据.相对TCP,UDP则是面向无连接的协议 使用UDP协议时,不需要建立连接,只需要知道对方的IP地址和端口号, ...

随机推荐

  1. 《利用Python进行数据分析》自学知识图谱-导航

    项目简介 Project Brief <利用Python进行数据分析-第二版>自学过程中整理的知识图谱. Python for Data Analysis: Data Wrangling ...

  2. Kubernetes容器化工具Kind实践部署Kubernetes v1.18.x 版本, 发布WordPress和MySQL

    Kind 介绍 Kind是Kubernetes In Docker的缩写,顾名思义是使用Docker容器作为Node并将Kubernetes部署至其中的一个工具.官方文档中也把Kind作为一种本地集群 ...

  3. Python Ethical Hacking - ARPSpoof_Detector

    ARPSPOOF_DETECTOR Watch value for gateway mac in the arp table Nice and simple, but will not detect ...

  4. 想用@Autowired注入static静态成员?官方不推荐你却还偏要这么做

    生命太短暂,不要去做一些根本没有人想要的东西.本文已被 https://www.yourbatman.cn 收录,里面一并有Spring技术栈.MyBatis.JVM.中间件等小而美的专栏供以免费学习 ...

  5. JAVA面向对象:三大特征 封装讲解

    一.JAVA封装 1.封装的理解 封装是 JAVA 面向对象思想的 一 种特性,也是一种信息隐蔽的技术 2.封装的原则 将类中的某些信息隐藏起来,来防止外部程序直接访问,通过类中的方法实现对隐藏的信息 ...

  6. 题解 洛谷 P6378 【[PA2010]Riddle】

    首先不难看出对于本题的点与点之间的限制关系,我们可以考虑用\(2-SAT\)来解决,通过从状态\(x\)向状态\(y\)连一条有向边表示若状态\(x\)存在,那么状态\(y\)必须存在. 接下来的处理 ...

  7. java实现单链表的增删改以及排序

    使用java代码模拟单链表的增删改以及排序功能 代码如下: package com.seizedays.linked_list; public class SingleLinkedListDemo { ...

  8. docker-compose安装zabbix

    在网上的很多帖子,我亲自试过,多数不行,启动后zabbix_server是退出状态,所以觉得自己亲自写一篇帖子,以作记录 1.安装docker和docker-compose yum install - ...

  9. jenkins集群(四) -- 持续集成

    一.jenkins配置git 1.安装源码管理器  git:http://updates.jenkins-ci.org/download/plugins/git/ 去上面的网址中把离线插件下载下来,然 ...

  10. 使样式只在webkit内核生效

    @media screen and (-webkit-min-device-pixel-ratio:0){ .do someting{ } }     使用媒体查询,制定样式