用Python绘制一套“会跳舞”的动态图形给你看看
在读技术博客的过程中,我们会发现那些能够把知识、成果讲透的博主很多都会做动态图表。他们的图是怎么做的?难度大吗?这篇文章就介绍了 Python 中一种简单的动态图表制作方法。
看这优美的舞姿
很多人学习python,不知道从何学起。
很多人学习python,掌握了基本语法过后,不知道在哪里寻找案例上手。
很多已经做案例的人,却不知道如何去学习更加高深的知识。
那么针对这三类人,我给大家提供一个好的学习平台,免费领取视频教程,电子书籍,以及课程的源代码!
QQ群:1097524789
数据暴增的年代,数据科学家、分析师在被要求对数据有更深的理解与分析的同时,还需要将结果有效地传递给他人。 如何让目标听众更直观地理解? 当然是将数据可视化啊,而且最 好是动态可视化。
本文将以线型图、条形图和饼图为例,系统地讲解如何让你的数据图表动起来 。
这些动态图表是用什么做的?
接触过数据可视化的同学应该对 Python 里的 Matplotlib 库并不陌生。它是一个基于 Python 的开源数据绘图包,仅需几行代码就可以帮助开发者生成直方图、功率谱、条形图、散点图等。这个库里有个非常实用的扩展包——FuncAnimation,可以让我们的静态图表动起来。
FuncAnimation 是 Matplotlib 库中 Animation 类的一部分,后续会展示多个示例。如果是首次接触,你可以将这个函数简单地理解为一个 While 循环,不停地在 “画布” 上重新绘制目标数据图。
如何使用 FuncAnimation?
这个过程始于以下两行代码:
import matplotlib.animation as ani animator = ani.FuncAnimation(fig, chartfunc, interval = 100)
从中我们可以看到 FuncAnimation 的几个输入:
fig 是用来 「绘制图表」的 figure 对象;
chartfunc 是一个以数字为输入的函数,其含义为时间序列上的时间;
interval 这个更好理解,是帧之间的间隔延迟,以毫秒为单位,默认值为 200。
这是三个关键输入,当然还有更多可选输入,感兴趣的读者可查看原文档,这里不再赘述。
下一步要做的就是将数据图表参数化,从而转换为一个函数,然后将该函数时间序列中的点作为输入,设置完成后就可以正式开始了。
在开始之前依旧需要确认你是否对基本的数据可视化有所了解。也就是说,我们先要将数据进行可视化处理,再进行动态处理。
按照以下代码进行基本调用。另外,这里将采用大型流行病的传播数据作为案例数据(包括每天的死亡人数)。
import matplotlib.animation as ani
import matplotlib.pyplot as plt
import numpy as np
import pandas as pdurl = 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_deaths_global.csv'
df = pd.read_csv(url, delimiter=',', header='infer')df_interest = df.loc[
df['Country/Region'].isin(['United Kingdom', 'US', 'Italy', 'Germany'])
& df['Province/State'].isna()]df_interest.rename(
index=lambda x: df_interest.at[x, 'Country/Region'], inplace=True)
df1 = df_interest.transpose()df1 = df1.drop(['Province/State', 'Country/Region', 'Lat', 'Long'])
df1 = df1.loc[(df1 != 0).any(1)]
df1.index = pd.to_datetime(df1.index)
绘制三种常见动态图表
绘制动态线型图
如下所示,首先需要做的第一件事是定义图的各项,这些基础项设定之后就会保持不变。它们包括:创建 figure 对象,x 标和 y 标,设置线条颜色和 figure 边距等:
import numpy as np
import matplotlib.pyplot as pltcolor = ['red', 'green', 'blue', 'orange']
fig = plt.figure()
plt.xticks(rotation=45, ha="right", rotation_mode="anchor") #rotate the x-axis values
plt.subplots_adjust(bottom = 0.2, top = 0.9) #ensuring the dates (on the x-axis) fit in the screen
plt.ylabel('No of Deaths')
plt.xlabel('Dates')
接下来设置 curve 函数,进而使用 .FuncAnimation 让它动起来:
def buildmebarchart(i=int):
plt.legend(df1.columns)
p = plt.plot(df1[:i].index, df1[:i].values) #note it only returns the dataset, up to the point i
for i in range(0,4):
p[i].set_color(color[i]) #set the colour of each curveimport matplotlib.animation as ani
animator = ani.FuncAnimation(fig, buildmebarchart, interval = 100)
plt.show()
动态饼状图
可以观察到,其代码结构看起来与线型图并无太大差异,但依旧有细小的差别。
import numpy as np
import matplotlib.pyplot as pltfig,ax = plt.subplots()
explode=[0.01,0.01,0.01,0.01] #pop out each slice from the piedef getmepie(i):
def absolute_value(val): #turn % back to a number
a = np.round(val/100.*df1.head(i).max().sum(), 0)
return int(a)
ax.clear()
plot = df1.head(i).max().plot.pie(y=df1.columns,autopct=absolute_value, label='',explode = explode, shadow = True)
plot.set_title('Total Number of Deaths\n' + str(df1.index[min( i, len(df1.index)-1 )].strftime('%y-%m-%d')), fontsize=12)import matplotlib.animation as ani
animator = ani.FuncAnimation(fig, getmepie, interval = 200)
plt.show()
主要区别在于,动态饼状图的代码每次循环都会返回一组数值,但在线型图中返回的是我们所在点之前的整个时间序列。返回时间序列通过 df1.head(i) 来实现,而. max()则保证了我们仅获得最新的数据,因为流行病导致死亡的总数只有两种变化:维持现有数量或持续上升。
df1.head(i).max()
动态条形图
创建动态条形图的难度与上述两个案例并无太大差别。在这个案例中,作者定义了水平和垂直两种条形图,读者可以根据自己的实际需求来选择图表类型并定义变量栏。
fig = plt.figure()
bar = ''def buildmebarchart(i=int):
iv = min(i, len(df1.index)-1) #the loop iterates an extra one time, which causes the dataframes to go out of bounds. This was the easiest (most lazy) way to solve this :)
objects = df1.max().index
y_pos = np.arange(len(objects))
performance = df1.iloc[[iv]].values.tolist()[0]
if bar == 'vertical':
plt.bar(y_pos, performance, align='center', color=['red', 'green', 'blue', 'orange'])
plt.xticks(y_pos, objects)
plt.ylabel('Deaths')
plt.xlabel('Countries')
plt.title('Deaths per Country \n' + str(df1.index[iv].strftime('%y-%m-%d')))
else:
plt.barh(y_pos, performance, align='center', color=['red', 'green', 'blue', 'orange'])
plt.yticks(y_pos, objects)
plt.xlabel('Deaths')
plt.ylabel('Countries')animator = ani.FuncAnimation(fig, buildmebarchart, interval=100)plt.show()
在制作完成后,存储这些动态图就非常简单了,可直接使用以下代码:
animator.save(r'C:\temp\myfirstAnimation.gif')
感兴趣的读者如想获得详细信息可参考:https://matplotlib.org/3.1.1/api/animation_api.html。
用Python绘制一套“会跳舞”的动态图形给你看看的更多相关文章
- Python 绘制你想要的数学函数图形
Python 非常热门,但除非工作需要没有刻意去了解更多,直到有个函数图要绘制,想起了它.结果发现,完全用不着明白什么是编程,就可以使用它完成很多数学函数图的绘制. 通过以下两个步骤,就可以进行数学函 ...
- Python绘制PDF文件~超简单的小程序
Python绘制PDF文件 项目简介 这次项目很简单,本次项目课,代码不超过40行,主要是使用 urllib和reportlab模块,来生成一个pdf文件. reportlab官方文档 http:// ...
- Python绘制3d螺旋曲线图实例代码
Axes3D.plot(xs, ys, *args, **kwargs) 绘制2D或3D数据 参数 描述 xs, ys X轴,Y轴坐标定点 zs Z值,每一个点的值都是1 zdir 绘制2D集合时使用 ...
- python 绘制柱状图
python 绘制柱状图 import matplotlib.pyplot as plt import numpy as np # 创建一个点数为 8 x 6 的窗口, 并设置分辨率为 80像素/每英 ...
- 运用python绘制小猪佩奇
用python绘制小猪佩奇 1.打开idle 2.点击File-New Files 3.输入以下代码 1. from turtle import * 2. 3. def nose(x,y):#鼻子 4 ...
- 使用python绘制根轨迹图
最近在学自动控制原理,发现根轨迹这一张全是绘图的,然而书上教的全是使用matlab进行计算机辅助绘图.但国内对于使用python进行这种绘图的资料基本没有,后来发现python-control包已经将 ...
- ROC,AUC,PR,AP介绍及python绘制
这里介绍一下如题所述的四个概念以及相应的使用python绘制曲线: 参考博客:http://kubicode.me/2016/09/19/Machine%20Learning/AUC-Calculat ...
- Python绘制奥运五环
绘制奥运五环主要涉及到Python中的turtle绘图库运用: turtle.forward(distance) 向当前画笔方向移动distance像素长度 turtle.backward(dista ...
- Python 3 udp 套接字
Python 3 udp套接字 TCP是建立可靠连接,并且通信双方都可以以流的形式发送数据.相对TCP,UDP则是面向无连接的协议 使用UDP协议时,不需要建立连接,只需要知道对方的IP地址和端口号, ...
随机推荐
- python数据处理(五)之数据清洗:研究、匹配与格式化
1 前言 保持数据格式一致以及可读,否则数据不可能正确合并 清洗数据的过程中记下清洗过程的每一步,方便数据回溯以及过程复用 2 数据清洗基础知识 2.1 找出需要清洗的数据 仔细观察文件,观察数据字段 ...
- vscode切换虚拟环境报错无法加载文件 E:\Python_project\shop_env\Scripts\Activate.ps1,因为在此系统上禁止运行 脚本。
在使用vscode切换python的虚拟环境时报错 解决方法如下: Windows+x打开面板,选择以管理员身份运行PowerShell,输入: set-executionpolicy remotes ...
- Azure Web App (三)切换你的Net Core Web 项目的数据库连接字符串
一,引言 上一篇文章讲到今天我们演示了一下,如何在Web App中创建 “Deployment Slot”进行快速无停机部署新功能代码,也使用VS进行发布到创建的Web App中创建的新的部署槽位中, ...
- Java常用API(Scanner类)
Java常用API( Scanner类)1 1.Scanner类 首先给大家介绍一下什么是JavaAPI API(Application Programming Interface),应用程序编程接口 ...
- OSCP Learning Notes - Capstone(4)
SickOS 1.2 Walkthrough Preparation: Down load the SickOS virtual machines from the following website ...
- kubernetes系列(十七) - 通过helm安装dashboard详细教程
1. 前提条件 2. 配置https证书为secret 3. dashboard安装 3.1 helm拉取dashboard的chart 3.2 配置dashboard的chart包配置 3.3 he ...
- 【软件安装】CentOS7安装Tengine_2_3_2(Nginx 1_17_0)
简单比较一下Tengine 和Nginx 背景 使用最新的软件,可以处理一些bug,文章对CentOS6不做介绍(不会用) 推荐使用Tengine,理由是淘宝再用,兼容 Nginx 可以随时切换 Te ...
- 从一次故障聊聊前端 UI 自动化测试
背景 事件的起因在于老板最近的两次"故障",一次去年的,一次最近.共同原因都是脚手架在发布平台发布打包时出错,导致线上应用白屏不可用. 最神奇的是,事后多次 Code Review ...
- Linux安装禅道项目管理软件
1.从官网上面下载禅道的rpm文件 #wget http://dl.cnezsoft.com/zentao/7.1/zentaopms-7.1.stable-1.noarch.rpm 2.用指令安装 ...
- 基于Python爬虫采集天气网实时信息
相信小伙伴们都知道今冬以来范围最广.持续时间最长.影响最重的一场低温雨雪冰冻天气过程正在进行中.预计,今天安徽.江苏.浙江.湖北.湖南等地有暴雪,局地大暴雪,新增积雪深度4-8厘米,局地可达10- ...