zoj3593One Person Game (扩展欧几里德)
There is an interesting and simple one person game. Suppose there is a number axis under your feet. You are at point A at first and your aim is point B. There are 6
kinds of operations you can perform in one step. That is to go left or right by a,b and c, here c always equals to a+b.
You must arrive B as soon as possible. Please calculate the minimum number of steps.
Input
There are multiple test cases. The first line of input is an integer T(0 < T ≤ 1000) indicates the number of test cases. Then T test cases follow. Each test
case is represented by a line containing four integers 4 integers A, B, a and b, separated by spaces. (-231 ≤ A, B < 231, 0 < a, b < 231)
Output
For each test case, output the minimum number of steps. If it's impossible to reach point B, output "-1" instead.
Sample Input
2
0 1 1 2
0 1 2 4
Sample Output
1
-1
题意:有两个端点A,B,每次你可以向左或者向右走a,b,a+b的距离,问最少走多少次能从A走到B。
思路:设A,B之间的距离为dis,a+b=c,那么题目等价于min{|x|+|y| | (ax+by=dis) || (ax+cy=dis) || (bx+cy=dis) }.注:扩展欧几里德算出来ax+by=gcd(c,d)中的特殊值x,y一定满足|x|+|y|最小,但是如果算的是ax+by=d,(d%gcd(a,b),但是d!=gcd(a,b))那么就不一定|x|+|y|最小,此时要使得x趋近于0,或者使得y趋近于0,这样算出来的k带入然后取几者中的最小值,因为x,y的关系式是一条直线,|x|+|y|=m在直线接近坐标轴的情况下取到最小值。
#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef long double ldb;
#define inf 10000000000000LL
#define pi acos(-1.0)
#define MOD 1000000007
#define maxn 1000005
ll extend_gcd(ll a,ll b,ll &x,ll &y){
if(b==0){
x=1;y=0;return a;
}
ll d=extend_gcd(b,a%b,y,x);
y-=a/b*x;
return d;
}
ll niyuan(ll a,ll n){
ll x,y;
ll d=extend_gcd(a,n,x,y);
if(d==1) return (x%n+n)%n;
else return -1;
}
ll gcd(ll a,ll b){
return (b>0)?gcd(b,a%b):a;
}
ll solve(ll a,ll b,ll dis)
{
ll x,y,d,x0,y0,ans;
d=extend_gcd(a,b,x,y);
if(dis%d!=0)return -1;
x0=x*dis/d;
y0=y*dis/d;
ll aa,bb;
aa=a/d;
bb=b/d;
ll k;
k=-x0/bb-1;
ans=abs(x0+bb*k)+abs(y0-aa*k);
k++;
ans=min(ans,abs(x0+bb*k)+abs(y0-aa*k) );
k++;
ans=min(ans,abs(x0+bb*k)+abs(y0-aa*k) );
k=y0/aa-1;
ans=min(ans,abs(x0+bb*k)+abs(y0-aa*k) );
k++;
ans=min(ans,abs(x0+bb*k)+abs(y0-aa*k) );
k++;
ans=min(ans,abs(x0+bb*k)+abs(y0-aa*k) );
return ans;
}
int main()
{
int n,m,i,j,T;
ll x1,x2,a,b,c,x,y;
scanf("%d",&T);
while(T--)
{
scanf("%lld%lld%lld%lld",&x1,&x2,&a,&b);
ll dis=abs(x2-x1);
c=a+b;
ll ans=solve(a,b,dis);
ans=min(ans,solve(a,c,dis));
ans=min(ans,solve(b,c,dis));
printf("%lld\n",ans);
}
return 0;
}
zoj3593One Person Game (扩展欧几里德)的更多相关文章
- (扩展欧几里德算法)zzuoj 10402: C.机器人
10402: C.机器人 Description Dr. Kong 设计的机器人卡尔非常活泼,既能原地蹦,又能跳远.由于受软硬件设计所限,机器人卡尔只能定点跳远.若机器人站在(X,Y)位置,它可以原地 ...
- [BZOJ1407][NOI2002]Savage(扩展欧几里德)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1407 分析: m,n范围都不大,所以可以考虑枚举 先枚举m,然后判定某个m行不行 某个 ...
- 欧几里德与扩展欧几里德算法 Extended Euclidean algorithm
欧几里德算法 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd( ...
- 51nod 1352 扩展欧几里德
给出N个固定集合{1,N},{2,N-1},{3,N-2},...,{N-1,2},{N,1}.求出有多少个集合满足:第一个元素是A的倍数且第二个元素是B的倍数. 提示: 对于第二组测试数据,集合分别 ...
- CF 7C. Line(扩展欧几里德)
题目链接 AC了.经典问题,a*x+b*y+c = 0整数点,有些忘记了扩展欧几里德,复习一下. #include <cstdio> #include <iostream> # ...
- poj2142-The Balance(扩展欧几里德算法)
一,题意: 有两个类型的砝码,质量分别为a,b;现在要求称出质量为d的物品, 要用多少a砝码(x)和多少b砝码(y),使得(x+y)最小.(注意:砝码位置有左右之分). 二,思路: 1,砝码有左右位置 ...
- poj2115-C Looooops(扩展欧几里德算法)
本题和poj1061青蛙问题同属一类,都运用到扩展欧几里德算法,可以参考poj1061,解题思路步骤基本都一样.一,题意: 对于for(i=A ; i!=B ;i+=C)循环语句,问在k位存储系统中循 ...
- poj1061-青蛙的约会(扩展欧几里德算法)
一,题意: 两个青蛙在赤道上跳跃,走环路.起始位置分别为x,y. 每次跳跃距离分别为m,n.赤道长度为L.两青蛙跳跃方向与次数相同的情况下, 问两青蛙是否有方法跳跃到同一点.输出最少跳跃次数.二,思路 ...
- HDU 1576 A/B【扩展欧几里德】
设A/B=x,则A=Bx n=A%9973=A-9973*y=Bx-9973*y 用扩展欧几里德求解 #include<stdio.h> #include<string.h> ...
随机推荐
- LeetCode141-环形链表检测
题目 给定一个链表,判断链表中是否有环. 如果链表中有某个节点,可以通过连续跟踪 next 指针再次到达,则链表中存在环. 为了表示给定链表中的环,我们使用整数 pos 来表示链表尾连接到链表中的位置 ...
- (二)数据源处理5-excel数据转换实战(上)
把excel_oper02.py 里面实现的:通过字典的方式获取所有excel数据.放进utils: ️️️️️️️️️️️️️️️️️️️️️️️️️️️️️️️ utils: def get_al ...
- 腾讯QQ,人人都是高手
今天,腾讯果然给出了官方回应,具体表述如下: 可能你看不太懂,其实我也看的不太懂,不过这就是公关的能力体现,就像我"人人都是高手"的大连车务组微机室小编一样,把一个降级flash描 ...
- Java 安全之Weblogic 2018-2628&2018-2893分析
Java 安全之Weblogic 2018-2628&2018-2893分析 0x00 前言 续上一个weblogic T3协议的反序列化漏洞接着分析该补丁的绕过方式,根据weblogic的补 ...
- MySQL全面瓦解18:自定义函数
定义 我们之前学习了MySQL的内置函数,非常丰富,满足了我们对数据操作的大部分需求. 但是如果有一些复杂的业务逻辑在数据库层面就可以完成,无需在程序层面完成的时候,这时候就可以写成MySQL自定义函 ...
- SAP GUI用颜色区分不同的系统
对于经常打开多个窗口的SAP用户,有时候可能同时登录了生产机.测试机和开发机,为了避免误操作,比如在测试要执行的操作,结果在生产机做了,结果可想而知. 虽然可以通过右下角查看再去判断,但是总是没有通过 ...
- ping 命令示例
将下面的代码粘贴到记事本中,然后保存为扩展名为BAT的文件,运行就可以将网段内ping不通的IP地址写入到文本文件IP.txt中. @echo offsetlocal ENABLEDELAYEDEXP ...
- Flutter 自定义列表以及本地图片引用
前言 上篇关于Flutter的文章总结了下标签+导航的项目模式的搭建,具体的有需要的可以去看看Flutter分类的文章,这篇文章我们简单的总结一下关于Flutter本地文件引用以及简单的自定义List ...
- MongoDB查询优化--explain,慢日志
引入 与Mysql数据库一样,MongoDB也有自己的查询优化工具,explain和慢日志 explain shell命令格式 db.collection.explain().<method(. ...
- Zju1100 Mondriaan
题目描述 有一个m行n列的矩阵,用1*2的骨牌(可横放或竖放)完全覆盖,骨牌不能重叠,有多少种不同的覆盖的方法? 你只需要求出覆盖方法总数mod p的值即可. 输入格式 三个整数数n,m,p,m< ...