dp的基本思想,是把大问题转化成一个个小问题,然后递归解决。

所以本质思想的话还是递归。

dp最重要的是要找到状态转移方程,也就是把大问题化解的过程。

举个例子

一个数字金字塔


在上面的数字三角形中寻找一条从顶部到底边的路径,使得路径上所经过的数字之和最大。路径上的每一步都只能往左下或 右下走。只需要求出这个最大和即可,不必给出具体路径。 三角形的行数大于1小于等于100,数字为 0 - 99.

这个题不难想到,你只要找出每一步的最大值就可以。·

那么这么找呢?(递归啊~)

我们先看看状态转移方程

/*
首先,肯定得用二维数组来存放数字三角形 然后我们用D( r, j) 来表示第r行第 j 个数字(r,j从1开始算) 我们用MaxSum(r, j)表示从D(r,j)到底边的各条路径中,最佳路径的数字之和。 因此,此题的最终问题就变成了求 MaxSum(1,1) 当我们看到这个题目的时候,首先想到的就是可以用简单的递归来解题: D(r, j)出发,下一步只能走D(r+1,j)或者D(r+1, j+1)。故对于N行的三角形,我们可以写出如下的递归式:
*/
if ( r == N)
MaxSum(r,j) = D(r,j)
else
MaxSum( r, j) = Max{ MaxSum(r+,j), MaxSum(r+,j+) } + D(r,j)

那么是不是就可以了?

 #include <iostream>
#include <algorithm>
#define MAX 101
using namespace std;
int D[MAX][MAX];
int n;
int MaxSum(int i, int j){
if(i==n)
return D[i][j];
int x = MaxSum(i+,j);
int y = MaxSum(i+,j+);
return max(x,y)+D[i][j];
}
int main(){
int i,j;
cin >> n;
for(i=;i<=n;i++)
for(j=;j<=i;j++)
cin >> D[i][j];
cout << MaxSum(,) << endl;
}

但实际上,这个代码会超时的。

为什么呢,

因为已经走过的路,存在重复遍历了

那就把已经遍历过的做一下标记,就可以避免重复遍历了。

 #include <iostream>
#include <algorithm>
using namespace std; #define MAX 101 int D[MAX][MAX];
int n;
int maxSum[MAX][MAX]; int MaxSum(int i, int j){
if( maxSum[i][j] != - )
return maxSum[i][j]; //如果是-1那说明这个肯定不是目标,直接回去就行了
if(i==n)
maxSum[i][j] = D[i][j];
else{
int x = MaxSum(i+,j);
int y = MaxSum(i+,j+);
maxSum[i][j] = max(x,y)+ D[i][j];
}
return maxSum[i][j];
}
int main(){
int i,j;
cin >> n;
for(i=;i<=n;i++)
for(j=;j<=i;j++) {
cin >> D[i][j];
maxSum[i][j] = -; //这里把所有的都设置为-1 }
cout << MaxSum(,) << endl;
}

动态规划入门(dp)的更多相关文章

  1. 初探动态规划(DP)

    学习qzz的命名,来写一篇关于动态规划(dp)的入门博客. 动态规划应该算是一个入门oier的坑,动态规划的抽象即神奇之处,让很多萌新 萌比. 写这篇博客的目标,就是想要用一些容易理解的方式,讲解入门 ...

  2. HDU 1231 最大连续子序列 --- 入门DP

    HDU 1231 题目大意以及解题思路见: HDU 1003题解,此题和HDU 1003只是记录的信息不同,处理完全相同. /* HDU 1231 最大连续子序列 --- 入门DP */ #inclu ...

  3. HDU 2571 命运 (入门dp)

    题目链接 题意:二维矩阵,左上角为起点,右下角为终点,如果当前格子是(x,y),下一步可以是(x+1,y),(x,y+1)或者(x,y*k) ,其中k>1.问最大路径和. 题解:入门dp,注意负 ...

  4. Leetcode之动态规划(DP)专题-详解983. 最低票价(Minimum Cost For Tickets)

    Leetcode之动态规划(DP)专题-983. 最低票价(Minimum Cost For Tickets) 在一个火车旅行很受欢迎的国度,你提前一年计划了一些火车旅行.在接下来的一年里,你要旅行的 ...

  5. 【学习笔记】动态规划—各种 DP 优化

    [学习笔记]动态规划-各种 DP 优化 [大前言] 个人认为贪心,\(dp\) 是最难的,每次遇到题完全不知道该怎么办,看了题解后又瞬间恍然大悟(TAT).这篇文章也是花了我差不多一个月时间才全部完成 ...

  6. Leetcode之动态规划(DP)专题-647. 回文子串(Palindromic Substrings)

    Leetcode之动态规划(DP)专题-647. 回文子串(Palindromic Substrings) 给定一个字符串,你的任务是计算这个字符串中有多少个回文子串. 具有不同开始位置或结束位置的子 ...

  7. Leetcode之动态规划(DP)专题-474. 一和零(Ones and Zeroes)

    Leetcode之动态规划(DP)专题-474. 一和零(Ones and Zeroes) 在计算机界中,我们总是追求用有限的资源获取最大的收益. 现在,假设你分别支配着 m 个 0 和 n 个 1. ...

  8. Leetcode之动态规划(DP)专题-486. 预测赢家(Predict the Winner)

    Leetcode之动态规划(DP)专题-486. 预测赢家(Predict the Winner) 给定一个表示分数的非负整数数组. 玩家1从数组任意一端拿取一个分数,随后玩家2继续从剩余数组任意一端 ...

  9. Leetcode之动态规划(DP)专题-264. 丑数 II(Ugly Number II)

    Leetcode之动态规划(DP)专题-264. 丑数 II(Ugly Number II) 编写一个程序,找出第 n 个丑数. 丑数就是只包含质因数 2, 3, 5 的正整数. 示例: 输入: n ...

  10. Leetcode之动态规划(DP)专题-198. 打家劫舍(House Robber)

    Leetcode之动态规划(DP)专题-198. 打家劫舍(House Robber) 你是一个专业的小偷,计划偷窃沿街的房屋.每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互 ...

随机推荐

  1. JavaScript基础对象创建模式之声明依赖模式(023)

    运用了命名空间(Namespace)模式后, 就可以使用一些JavaScript库了,比如YAHOO作用YUI2库的全局对象,可以通过 YAHOO.util.Dom 和 YAHOO.util.Even ...

  2. Layer 3.0

    https://jeesite.gitee.io/front/layer/3.0/layer.layui.com/index.html

  3. 用Python语言绘制股市OBV指标效果

    我的新书<基于股票大数据分析的Python入门实战>于近日上架,在这篇博文向大家介绍我的新书:<基于股票大数据分析的Python入门实战>里,介绍了这本书的内容.这里将摘录出部 ...

  4. PE文件格式详解(一)

    PE文件格式介绍(一) 0x00 前言 PE文件是portable File Format(可移植文件)的简写,我们比较熟悉的DLL和exe文件都是PE文件.了解PE文件格式有助于加深对操作系统的理解 ...

  5. Redis的主从复制(基本入门)

    描述 从主节点(主机)到从节点(从机)单向的数据复制 特性(主从复制是Redis高可用的基础) 数据冗余 故障恢复 负载均衡 读写分离(主节点有读写权限,从节点只有读的权限) 注:以下操作都是在cen ...

  6. docker自动化部署前端项目实战一

    docker自动化部署前端项目实战一 本文适用于个人项目,如博客.静态文档,不涉及后台数据交互,以部署文档为例. 思路 利用服务器node脚本,监听github仓库webhook push事件触发po ...

  7. es6 模块与commonJS的区别

    在刚接触模块化开发的阶段,我总是容易将export.import.require等语法给弄混,今天索性记个笔记,将ES6 模块知识点理清楚 未接触ES6 模块时,模块开发方案常见的有CommonJS. ...

  8. jmeter察看结果树-响应数据乱码

    打开jmeter下的目录:\bin\jmeter.properties文件,搜索“encoding”关键字,找到如下配置: # The encoding to be used if none is p ...

  9. python 迭代器(二):迭代器基础(二)可迭代的对象与迭代器的对比

    可迭代的对象 如果对象实现了能返回迭代器的 __iter__ 方法,那么对象就是可迭代的. 序列都可以迭代:实现了 __getitem__ 方法,而且其参数是从零开始的索引,这种对象也可以迭代. &g ...

  10. python 装饰器(五):装饰器实例(二)类装饰器(类装饰器装饰函数)

    回到装饰器上的概念上来,装饰器要求接受一个callable对象,并返回一个callable对象(不太严谨,详见后文). 那么用类来实现也是也可以的.我们可以让类的构造函数__init__()接受一个函 ...