中科大数分教材:用阶乘倒数和计算e值的误差和e是无理数的证明,用到误差计算
\(e=lim_{n \to \infty}e_{n}(1+\frac{1}{n})^n\\\)
\(=\lim_{n \to \infty}(\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\cdot\cdot+...\frac{1}{n!})\)
\(\lim_{n \to \infty}S_{n}=\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\cdot+\cdot+\frac{1}{n!}=e\)
因为两个数列有相同的极限e,取充分大的n,用S_{n}作为e的近似值。
\(因为S_{n+1}=S_{n}+\frac{1}{n!}*\frac{1}{n+1}\\\)
\(在计算过程中,可以利用前面已经计算出来的S_{n}的结果\\\)
\(产生的误差为\\\)
\(S_{n+m}-S{n}>0\\\)
\(S_{n+m}-S{n}\\\)
\(=\frac{1}{(n+1)!}+\frac{1}{(n+2)!}+\frac{1}{(n+3)!}+\cdot\cdot\cdot+\frac{1}{(n+m)!}\\\)
\(=\frac{1}{(n+1)!}*(1+\frac{1}{n+2}+\cdot\cdot\cdot+\frac{1}{(n+2)(n+3)\cdot\cdot\cdot(n+m)})\\\)
\(<\frac{1}{(n+1)!}*(1+\frac{1}{n+1}+(\frac{1}{n+1})^2+(\frac{1}{n+1})^3\cdot\cdot\cdot+(\frac{1}{n+1})^{m-1})\\\)
等比数列和公式:\(S_{n}=na_{1}, q=1,\quad S_{n}=a_{1}.\frac{1-q^n}{1-q}, q\neq 1\\\)
其中n为项数。
故
\(上式=\frac{1}{(n+1)!}*\frac{1-(\frac{1}{n+1})^m}{1-\frac{1}{n+1}}\\\)
\(\quad =\frac{1}{n!n}\)
\(即0<S_{n+m}-S_{n}<\frac{1}{n!n}\)
\(若m\to \infty,可得\\\)
\(0 < e - S_{n} \leqslant \frac{1}{n!n}\quad\quad\quad n \in N^{+}\quad\quad\quad(1)\\\)
证明e是无理数
证明:用反证法。
\(设 e=frac{p}{q},其中p,q\in N^{+}\)
\(因为2<e<3\),可知e不是整数,且q不等于1,否则,若q=1,\(\\\)
\(则e=\frac{p}{q}=\frac{p}{1}=p,为整数,可知q\geqslant2\)
\(由(1)式,当n=q时,S_{n}=S_{q}, (1)式中的n!n,替换为q!q,可得\\\)
\(\quad0<q!(e-S_{q})\leqslant \frac{1}{q}\leqslant \frac{1}{2}\quad\quad\quad(2)\\\)
\(把e=\frac{p}{q}代人下式\\\)
\(q!(e-S_{q})=q!(\frac{p}{q} - S_{q})\)
\(\quad\quad\quad\quad\quad=(q-1)!p-q!(1+1+\frac{1}{2!}+\frac{1}{3!}+\cdot\cdot+\frac{1}{q!}))\)
\(上式为整数,与(2)式矛盾\)
中科大数分教材:用阶乘倒数和计算e值的误差和e是无理数的证明,用到误差计算的更多相关文章
- for循环计算阶乘的和,for循环计算阶乘倒数的和
计算阶乘的和 //阶乘的和,5!+4!+3!+2! int a = 5; for(int b = 4; b > 0; b--) { a = a * b; } //先定义好最大数的阶乘是多少 in ...
- Miiler-Robin素数测试与Pollard-Rho大数分解法
板题 Miiler-Robin素数测试 目前已知分解质因数以及检测质数确定性方法就只能\(sqrt{n}\)试除 但是我们可以基于大量测试的随机算法而有大把握说明一个数是质数 Miler-Robin素 ...
- Java循环输出一个菱形与阶乘倒数
package javafirst; public class HomeWork { public static void main(String[] args){ System.out.printl ...
- 输出链表的倒数第K个值
题目描述 输入一个链表,输出该链表中倒数第k个结点. 思路一:链表不能向前遍历,只能向后遍历.因此倒数第K个结点就是 正序的 :len(链表)-1-K的下一个. 注意,此处的思路与代码中具体实 ...
- mysql计算时间差值,单位分钟数
TIMESTAMPDIFF(MINUTE, 开始时间, 结束时间) as 时间差(单位:分钟数) TIMESTAMPDIFF(interval,datetime_expr1,datetime_expr ...
- 查找单链表的倒数第k个值
刚开始,我想到的是一种笨方法,先遍历单链表,计算出单链表的长度len,然后再从头遍历单链表到第len-k个节点,那么 这个节点既是单链表的倒数第k个节点. 不过这种算法时间复杂度挺高的,还有一种更简单 ...
- vuex分模块后,如何获取state的值
问题:vuex分模块后,一个模块如何拿到其他模块的state值,调其他模块的方法? 思路:1.通过命名空间取值--this.$store.state.car.list // OK 2.通过定义该属性的 ...
- PAT 1009 Product of Polynomials (25分) 指数做数组下标,系数做值
题目 This time, you are supposed to find A×B where A and B are two polynomials. Input Specification: E ...
- e的存在性证明和计算公式的证明
\(\quad\quad前言\quad\quad\\\) \(此证明,改编自中科大数分教材,史济怀版\\\) \(中科大教材,用的是先固定m,再放大m,跟菲赫金哥尔茨的方法一样.\\\) \(而我这里 ...
随机推荐
- HTML&CSS面试高频考点(一)
1. 行内元素/块级元素 非替换元素/替换元素 行内元素(内联元素):a, abbr(缩写), acronym(只取首字母缩写), b, bdo(文本方向), big, br, cite(引用), c ...
- 入门大数据---MapReduce-API操作
一.环境 Hadoop部署环境: Centos3.10.0-327.el7.x86_64 Hadoop2.6.5 Java1.8.0_221 代码运行环境: Windows 10 Hadoop 2.6 ...
- Docker基本命令及工作原理
第一个Docker容器 1.首先确保Docker运行正常:docker info
- js写一个简单的日历
思路:先写一个结构和样式,然后写本月的时间,之后计算上下月份的关系 <!DOCTYPE html> <html lang="en"> <head> ...
- LINUX 下 一些常用的信息显示命令:
tcsh——shell程序,它可以在登录shell和shell 脚本命令处理器之间做命令语言解释器.stat——显示指定文件的相关信息who.w——显示在线登陆用户whoami——显示用户自己的身份h ...
- 如何白嫖微软Azure12个月及避坑指南
Azure是微软提供的一个云服务平台.是全球除了AWS外最大的云服务提供商.Azure是微软除了windows之外另外一个王牌,微软错过了移动端,还好抓住了云服务.这里的Azure是Azure国际不是 ...
- 单调栈之WYT的刷子
好久没更题解了(改题困难的我) 题目描述 WYT有一把巨大的刷子,刷子的宽度为M米,现在WYT要使用这把大刷子去粉刷有N列的栅栏(每列宽度都为1米:每列的高度单位也为米,由输入数据给出). 使用刷子的 ...
- 记一次在Grafana中使用Worldmap Panel的经历
背景 因与工作相关,以下内容皆做了脱敏处理 主要的需求是要根据地理位置查看可视化的数据. 安装及创建 安装命令来源于官网 grafana-cli plugins install grafana-wor ...
- Tomcat双击startup.bat闪退的原因及解决方式
很久不碰Tomcat了,最近因为种种原因需要重新投入到Java Web的怀抱,所以又重新接触了Tomcat 我下载了tomcat的压缩包将其解压缩到某个位置,我这里是D盘下的tomcat文件夹中,但是 ...
- JVM 专题十三:运行时数据区(八)直接内存
1. 直接内存 不是虚拟机运行时数据区的一部分,也不是<Java虚拟机规范>中定义的内存区域. 直接内存是Java堆外的.直接向系统申请的内存区间. 来源于NIO,通过存在堆中的Direc ...