文章目录:

1 Dataset基类

PyTorch 读取其他的数据,主要是通过 Dataset 类,所以先简单了解一下 Dataset 类。在看很多PyTorch的代码的时候,也会经常看到dataset这个东西的存在。Dataset类作为所有的 datasets 的基类存在,所有的 datasets 都需要继承它。

先看一下源码:

这里有一个__getitem__函数,__getitem__函数接收一个index,然后返回图片数据和标签,这个index通常是指一个list的index,这个list的每个元素就包含了图片数据的路径和标签信息。之后会举例子来讲解这个逻辑

其实说着了些都没用,因为在训练代码里是感觉不到这些操作的,只会看到通过DataLoader就可以获取一个batch的数据,这是触发去读取图片这些操作的是DataLoader里的__iter__(self)(后面再讲)。

2 构建Dataset子类

下面我们构建一下Dataset的子类,叫他MyDataset类:

import torch
from torch.utils.data import Dataset,DataLoader class MyDataset(Dataset):
def __init__(self):
self.data = torch.tensor([[1,2,3],[2,3,4],[3,4,5],[4,5,6]])
self.label = torch.LongTensor([1,1,0,0]) def __getitem__(self,index):
return self.data[index],self.label[index] def __len__(self):
return len(self.data)

2.1 Init

  • 初始化中,一般是把数据直接保存在这个类的属性中。像是self.data,self.label

2.2 getitem

  • index是一个索引,这个索引的取值范围是要根据__len__这个返回值确定的,在上面的例子中,__len__的返回值是4,所以这个index会在0,1,2,3这个范围内。

3 dataloader

从上文中,我们知道了MyDataset这个类中的__getitem__的返回值,应该是某一个样本的数据和标签(如果是测试集的dataset,那么就只返回数据),在梯度下降的过程中,一般是需要将多个数据组成batch,这个需要我们自己来组合吗?不需要的,所以PyTorch中存在DataLoader这个迭代器(这个名词用的准不准确有待考究)。

继续上面的代码,我们接着写代码:

mydataloader = DataLoader(dataset=mydataset,
batch_size=1)

我们现在创建了一个DataLoader的实例,并且把之前实例化的mydataset作为参数输入进去,并且还输入了batch_size这个参数,现在我们使用的batch_size是1.下面来用for循环来遍历这个dataloader:

for i,(data,label) in enumerate(mydataloader):
print(data,label)

输出结果是:

意料之中的结果,总共输出了4个batch,每个batch都是只有1个样本(数据+标签),值得注意的是,这个输出过程是顺序的

我们稍微修改一下上面的DataLoader的参数:

mydataloader = DataLoader(dataset=mydataset,
batch_size=2,
shuffle=True) for i,(data,label) in enumerate(mydataloader):
print(data,label)

结果是:

可以看到每一个batch内出现了2个样本。假如我们再运行一遍上面的代码,得到:

两次结果不同,这是因为shuffle=True,dataset中的index不再是按照顺序从0到3了,而是乱序,可能是[0,1,2,3],也可能是[2,3,1,0]。

【个人感想】

Dataloader和Dataset两个类是非常方便的,因为这个可以快速的做出来batch数据,修改batch_size和乱序都非常地方便。有下面两个希望注意的地方:

  1. 一般标签值应该是Long整数的,所以标签的tensor可以用torch.LongTensor(数据)或者用.long()来转化成Long整数的形式。
  2. 如果要使用PyTorch的GPU训练的话,一般是先判断cuda是否可用,然后把数据标签都用to()放到GPU显存上进行GPU加速。
device = 'cuda' if torch.cuda.is_available() else 'cpu'
for i,(data,label) in enumerate(mydataloader):
data = data.to(device)
label = label.to(device)
print(data,label)

看一下输出:

【小白学PyTorch】3 浅谈Dataset和Dataloader的更多相关文章

  1. 【小白学C#】浅谈.NET中的IL代码

    一.前言 前几天群里有位水友提问:”C#中,当一个方法所传入的参数是一个静态字段的时候,程序是直接到静态字段拿数据还是从复制的函数栈中拿数据“.其实很明显,这和方法参数的传递方式有关,如果是引用传递的 ...

  2. 【小白学PyTorch】20 TF2的eager模式与求导

    [新闻]:机器学习炼丹术的粉丝的人工智能交流群已经建立,目前有目标检测.医学图像.时间序列等多个目标为技术学习的分群和水群唠嗑的总群,欢迎大家加炼丹兄为好友,加入炼丹协会.微信:cyx64501661 ...

  3. 【小白学PyTorch】15 TF2实现一个简单的服装分类任务

    [新闻]:机器学习炼丹术的粉丝的人工智能交流群已经建立,目前有目标检测.医学图像.时间序列等多个目标为技术学习的分群和水群唠嗑的总群,欢迎大家加炼丹兄为好友,加入炼丹协会.微信:cyx64501661 ...

  4. 【小白学PyTorch】8 实战之MNIST小试牛刀

    文章来自微信公众号[机器学习炼丹术].有什么问题都可以咨询作者WX:cyx645016617.想交个朋友占一个好友位也是可以的~好友位快满了不过. 参考目录: 目录 1 探索性数据分析 1.1 数据集 ...

  5. 【小白学PyTorch】4 构建模型三要素与权重初始化

    文章目录: 目录 1 模型三要素 2 参数初始化 3 完整运行代码 4 尺寸计算与参数计算 1 模型三要素 三要素其实很简单 必须要继承nn.Module这个类,要让PyTorch知道这个类是一个Mo ...

  6. 【小白学PyTorch】5 torchvision预训练模型与数据集全览

    文章来自:微信公众号[机器学习炼丹术].一个ai专业研究生的个人学习分享公众号 文章目录: 目录 torchvision 1 torchvision.datssets 2 torchvision.mo ...

  7. 【小白学PyTorch】11 MobileNet详解及PyTorch实现

    文章来自微信公众号[机器学习炼丹术].我是炼丹兄,欢迎加我微信好友交流学习:cyx645016617. @ 目录 1 背景 2 深度可分离卷积 2.2 一般卷积计算量 2.2 深度可分离卷积计算量 2 ...

  8. 【小白学PyTorch】16 TF2读取图片的方法

    [新闻]:机器学习炼丹术的粉丝的人工智能交流群已经建立,目前有目标检测.医学图像.NLP等多个学术交流分群和水群唠嗑的总群,欢迎大家加炼丹兄为好友,加入炼丹协会.微信:cyx645016617. 参考 ...

  9. 【小白学PyTorch】17 TFrec文件的创建与读取

    [新闻]:机器学习炼丹术的粉丝的人工智能交流群已经建立,目前有目标检测.医学图像.时间序列等多个目标为技术学习的分群和水群唠嗑的总群,欢迎大家加炼丹兄为好友,加入炼丹协会.微信:cyx64501661 ...

随机推荐

  1. luogu P4008 [NOI2003]文本编辑器 splay 块状链表

    LINK:文本编辑器 这个东西感觉块状链表写细节挺多 (块状链表本来就难写 解释一下块状链表的做法:其实是一个个数组块 然后利用链表给链接起来 每个块的大小为sqrt(n). 这样插入删除的时候直接暴 ...

  2. 二维线段树->树套树

    现在上真正的二维线段树 毕竟 刚刚那个是卡常 过题我们现在做一个更高级的做法二维线段树. 大体上维护一颗x轴线段树 然后在每个节点的下方再吊一颗维护y轴的线段树那么此时我们整个平面就被我们玩好了. 这 ...

  3. 《分享》Graphql入门与实践

    最近项目用到了graphql,学习了一些并在公司做了一个小分享,希望对你有帮助 一.介绍 Graphql是一种面向数据的API查询语言 Graphql给前端提供一种强力的查询工具,我们可以根据自己定义 ...

  4. Linux常用命令之文件查找which、find、locate命令讲解

    在之前的课程中,我们介绍了Linux系统的常用文件处理命令和权限管理命令,今天我们继续来学习Linux操作系统的其他处理命令. 1.文件搜索命令 which 命令解释 命令名称:which 命令所在路 ...

  5. 最全总结!聊聊 Python 调用 JS 的几种方式

    1. 前言 很多人学习python,不知道从何学起.很多人学习python,掌握了基本语法过后,不知道在哪里寻找案例上手.很多已经做案例的人,却不知道如何去学习更加高深的知识.那么针对这三类人,我给大 ...

  6. NIO(三):Selector选择器

    一.堵塞式与非堵塞式 在传统IO中,将数据由当前线程从客户端传入服务端,由服务端的内核进行判断传过来的数据是否合法,内核中是否存在数据. 如果不存在数据 ,并且数据并不合法,当前线程将会堵塞等待.当前 ...

  7. C#LeetCode刷题-链表

    链表篇 # 题名 刷题 通过率 难度 2 两数相加   29.0% 中等 19 删除链表的倒数第N个节点   29.4% 中等 21 合并两个有序链表 C#LeetCode刷题之#21-合并两个有序链 ...

  8. Filebeat 收集K8S 日志,生产环境实践

    根据生产环境要求,需要采集K8Spod 日志,和开发协商之后,pod中应用会将日志输出到容器终端上,这时可以直接用filebeat 采集node节点上面的/var/log/containers/*.l ...

  9. C#图解教程(第四版)—03—类和继承

    1 使用基类的引用 派生类的实例由  基类的实例   加上  派生类 新增的成员 组成. 派生类的  引用   指向整个类对象,包括基类部分 重点:使用对象的  基类部分的引用  来访问对象   (父 ...

  10. jQuery的事件与 动画

    什么是事件: 事件的本质是委托. Jquery的 方法: $().css(); $().click(); 等等. 鼠标的事件: 区别在于:mouseover与mouseout再进入或离开后会执行这两个 ...