动态规划算法

应用场景—0-1背包问题

背包问题:有一个背包,容量为4磅,现有物品如下

物品 重量 价格
吉他(G) 1 1500
音响(S) 4 3000
电脑(L) 3 2000

要求:

  1. 达到目标为装入的背包的总价值最大,且重量不超出

  2. 要求装入的物品不可重复

动态规划算法介绍

  1. 动态规划(Dynamic Programming)算法的核心思想是:将大问题划分为小问题进行解决,熊二一步步获取最优解的处理算法

  2. 与分治算法类似,但不同的是动态规划子问题不相互独立

  3. 动态规划可以通过填表的方式来逐步推进,得到最优解

解决0-1背包问题

主要思想

利用动态规划来解决,每次遍历到第i个物品,根据w[i]和v[i]来确定是否需要将该物品放入背包中。即对于给定的n个物品,令:

  • w[i]:第i个商品的重量

  • val[i]:第i个商品的价值

  • C:背包容量

  • v[i][j :表示前i个物品中能够装入容量为j的背包中的最大价值

则有下列结论:

v[i][0] = v[0][j] = 0;
当w[i] > j时:v[i][j] = v[i-1][j]
当j >= w[i]时:v[i][j] = max{v[i-1][j],v[i-1][j-w[i]] + val[i]}

思路图解

背包的填表过程

  1. 物品还未装入背包,初始状态

    行,0磅,1磅……代表背包容量,哪一行表示可以放入此行及 以上行的物品,但是哪一行先方哪一行的物品

    列,代表物品在对应背包容量下各自在背包中的价格

    物品 0磅 1磅 2磅 3磅 4磅
      0 0 0 0 0
    吉他(G)        
    音响(S)        
    电脑(L)        
  2. 加入现在只有吉他此时不论背包容量有多大,只能放一把吉他

    物品 0磅 1磅 2磅 3磅 4磅
      0 0 0 0 0
    吉他(G) 1500(G) 1500(G) 1500(G) 1500(G)
    音响(S)        
    电脑(L)        
  3. 假如有吉他和音响,当背包容量同时满足多个物品时,考虑哪个物品价值更高将其放入

    物品 0磅 1磅 2磅 3磅 4磅
      0 0 0 0 0
    吉他(G) 1500(G) 1500(G) 1500(G) 1500(G)
    音响(S) 1500(G) 1500(G) 1500(G) 3000(S)
    电脑(L)        
  4. 假如由吉他,音响,电脑时,先放电脑,放完之后如果有空余空间可以放入其他物品则放入,否则不用再关心

    物品 0磅 1磅 2磅 3磅 4磅
      0 0 0 0 0
    吉他(G) 1500(G) 1500(G) 1500(G) 1500(G)
    音响(S) 1500(G) 1500(G) 1500(G) 3000(S)
    电脑(L) 1500(G) 1500(G) 2000(L) 2000(L) + 1500(G)

    则有下列结论:

    //表示填入的表的第一行和第一列置0
    v[i][0] = v[0][j] = 0;

    //当新增加商品时,若新商品大于背包容量时,则直接使用上一单元格的装入策略
    当w[i] > j时:v[i][j] = v[i-1][j]

    //当新增加商品时,其容量小于背包容量,
    //装入的策略:
       //1. v[i-1][j]上一单元格的价值
       //2. v[i-1][j-w[i]] + v[i]当前商品的 价值+剩余空间装入物品价值的最大 值
       //3. 此时比较装入商品的价值,使用价值最         大的策略
    当j >= w[i]时:v[i][j] = max{v[i-1][j],v[i-1][j-w[i]] + val[i]}

代码实现

package whyAlgorithm.dynamic;

import java.util.Arrays;

/**
* @Description TODO 动态规划解决0-1背包问题
* @Author why
* @Date 2020/12/9 21:04
* Version 1.0
**/
public class KnapsackProblem {
   public static void main(String[] args) {
       int[] w = {1,4,3};//物品重量
       int[] val = {1500,2000,3000};//物品价值
       int m = 4;//背包容量
       int n = val.length;//物品个数

       //为记录放入商品的情况,定义一个二维数组
       int[][] path = new int[n+1][m+1];

       //创建二维数组
       //v[i][j]表示前i个物品能够装入容量为j的背包中最大的价值
       int[][] v = new int[n+1][m+1];

       //初始化第一行和第一列,在本程序中可以不处理,因为默认为0
       for (int i = 0; i < v.length; i++) {
           //将第一列置为0
           v[i][0] = 0;
           //将第一行置为0
           v[0][i] = 0;
      }
       //根据前面的公式动态规划处理
       for (int i = 1; i < v.length; i++) {//不处理第一行
           for (int j = 1; j < v[0].length; j++) {//不出来第一列
               //公式
               //因为i从1开始,故原公式修改为 w[i] = w[i-1]
               if (w[i-1] > j){
                   v[i][j] = v[i-1][j];
              }else {
                   //int b = v[i-1][j-w[i-1]] + val[i-1];
                   //int max = Math.max(v[i - 1][j], b);
                   //v[i][j] = max;
                   //为了记录商品存放到背包的情况不能简单地使用上面的公式,需要使用if,else体现这个公式
                   if (v[i-1][j] < v[i-1][j-w[i-1]] + val[i-1]){
                       v[i][j] = v[i-1][j-w[i-1]] + val[i-1];
                       //记录当前情况
                       path[i][j] = 1;
                  }else {
                       v[i][j] = v[i-1][j];
                  }
              }
          }
      }
       System.out.println("分配表:");
       for (int i = 0; i < v[0].length-1; i++) {
           System.out.println(Arrays.toString(v[i]));
      }

       //输出放入的哪些商品
       //遍历path,这样输出会有误,我们要最后的放入
//       for (int i = 0; i < path.length; i++) {
//           for (int j = 0; j < path[0].length; j++) {
//               if (path[i][j] == 1){
//                   System.out.printf("第%s个商品放入到背包\n",i);
//               }
//           }
//       }

       int i = path.length - 1;//行的最大下标
       int j = path[0].length - 1;//列的最大下标

       while (i > 0 && j > 0){//从path数组的最后开始找
           if (path[i][j] == 1){
               System.out.printf("第%s个商品放入到背包\n",i);
               j -= w[i-1];
          }
           i--;
      }
  }
}

算法(Java实现)—— 动态规划算法的更多相关文章

  1. 算法java实现--动态规划--电路布线问题

    /* * dianlubuxian.java * Version 1.0.0 * Created on 2017年11月30日 * Copyright ReYo.Cn */ package reyo. ...

  2. JAVA分析html算法(JAVA网页蜘蛛算法)

    近来有些朋友在做蜘蛛算法,或者在网页上面做深度的数据挖掘.但是遇到复杂而繁琐的html页面大家都望而却步.因为很难获取到相应的数据. 最古老的办法的是尝试用正则表达式,估计那么繁琐的东西得不偿失,浪费 ...

  3. 排序算法-Java实现快速排序算法

  4. 算法 | Java 常见排序算法(纯代码)

    目录 汇总 1. 冒泡排序 2. 选择排序 3. 插入排序 4. 快速排序 5. 归并排序 6. 希尔排序 6.1 希尔-冒泡排序(慢) 6.2 希尔-插入排序(快) 7. 堆排序 8. 计数排序 9 ...

  5. (java)五大常用算法

    算法一:分治法 基本概念 1.把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题--直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并. 2.分治策略是对于一个 ...

  6. 快速排序算法 java 实现

    快速排序算法 java 实现 快速排序算法Java实现 白话经典算法系列之六 快速排序 快速搞定 各种排序算法的分析及java实现 算法概念 快速排序是C.R.A.Hoare于1962年提出的一种划分 ...

  7. ID3算法Java实现

    ID3算法java实现 1 ID3算法概述 1.1 信息熵 熵是无序性(或不确定性)的度量指标.假如事件A的全概率划分是(A1,A2,...,An),每部分发生的概率是(p1,p2,...,pn).那 ...

  8. Java数据结构和算法(五)--希尔排序和快速排序

    在前面复习了三个简单排序Java数据结构和算法(三)--三大排序--冒泡.选择.插入排序,属于算法的基础,但是效率是偏低的,所以现在 学习高级排序 插入排序存在的问题: 插入排序在逻辑把数据分为两部分 ...

  9. Java数据结构和算法(一)--栈

    栈: 英文名stack,特点是只允许访问最后插入的那个元素,也就是LIFO(后进先出) jdk中的stack源码: public class Stack<E> extends Vector ...

  10. Java数据结构和算法(六)--二叉树

    什么是树? 上面图例就是一个树,用圆代表节点,连接圆的直线代表边.树的顶端总有一个节点,通过它连接第二层的节点,然后第二层连向更下一层的节点,以此递推 ,所以树的顶端小,底部大.和现实中的树是相反的, ...

随机推荐

  1. JS你所不知的小数取整方法

    先介绍几种基本方法. 1.toFixed()方法 toFixed() 方法是属于 Number 对象的方法,可以把 Number 四舍五入到指定的小数位数,括号内为小数位数,范围为0~20,为0时即取 ...

  2. 好端端的数据结构,为什么叫它SB树呢?

    大家好,今天给大家介绍一个很厉害的数据结构,它的名字就很厉害,叫SB树,业内大佬往往叫做傻叉树.这个真不是我框你们,而是它的英文缩写就叫SBT. SBT其实是英文Size balanced tree的 ...

  3. Educational Codeforces Round 96 (Rated for Div. 2) E. String Reversal 题解(思维+逆序对)

    题目链接 题目大意 给你一个长度为n的字符串,可以交换相邻两个元素,使得这个字符串翻转,求最少多少种次数改变 题目思路 如果要求数组排序所需要的冒泡次数,那其实就是逆序对 这个也差不多,但是如果是相同 ...

  4. 2019-2020 ICPC Asia Hong Kong Regional Contest J. Junior Mathematician 题解(数位dp)

    题目链接 题目大意 要你在[l,r]中找到有多少个数满足\(x\equiv f(x)(mod\; m)\) \(f(x)=\sum_{i=1}^{k-1} \sum_{j=i+1}^{k}d(x,i) ...

  5. H3CNE认证(题库)

    H3CNE考试的题库,均为发烧友收集的,拥有将近认证考试的百分之八十五的题,但答案不具备官方性,但是题库具有解析. https://huxiaoyao.lanzous.com/b01tr2skd 密码 ...

  6. 七牛云实现前端js上传实现办法

    1.七牛云上传前台页面 1.1 安装相关包 npm install --save jquery@1.12.1 # 安装jquery 1.2 index.html 引入qiniu.min.js < ...

  7. JZOJ8月10日提高组T2 Fix

    JZOJ8月10日提高组T2 Fix 题目 Description There are a few points on a plane, and some are fixed on the plane ...

  8. websocket简单实现五子棋即时对战功能

    几年前做的一个小demo,代码比较老,先上下html显示效果图 因为代码中注释比较详细,所以就直接上代码了 html代码,也就是上图展示的效果页面 <!DOCTYPE html> < ...

  9. Spring Boot 2.x 多数据源配置之 JPA 篇

    场景假设:现有电商业务,商品和库存分别放在不同的库 配置数据库连接 app: datasource: first: driver-class-name: com.mysql.cj.jdbc.Drive ...

  10. 20191012_WMI中可以看到有打印机, 设备管理器中没有

    开发过程中使用SELECT * FROM Win32_Printer 查看设备有一个备份打印机, 并且被设置为默认打印机了, 但是设备管理器中没有 解决方法: 使用系统自带的测试WMI  (Windo ...