题意:每包干脆面可能开出卡或者什么都没有,一共n种卡,每种卡每包爆率pi,问收齐n种卡的期望

思路:期望求解公式为:$E(x) = \sum_{i=1}^{k}pi * xi + (1 - \sum_{i = 1}^{k}pi) * [1 + E(x)]$,即能转换到x情况的期望+x情况原地踏步的期望。

因为n比较小,我们可以直接状压来表示dp[x]为x状态时集齐的期望。那么显然dp[111111111] = 0。然后我们状态反向求解。最终答案为dp[0]。

然后来看期望的求解:$E(x) = \sum_{i = 1}^{k}pi * [1 + E(xi)] + (1 - \sum_{i = 1}^{k}pi) * [1 + E(x)]$,E(xi)是E(x)某一位0变成1后的期望。

化简后:$E(x) = (\sum_{i = 1}^{k}pi * E(xi) + 1) / \sum_{i = 1}^{k}pi$

题解

代码:

#include<set>
#include<map>
#include<cmath>
#include<queue>
#include<cstdio>
#include<vector>
#include<cstring>
#include <iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int maxn = 20 + 5;
const int M = maxn * 30;
const ull seed = 131;
const int INF = 0x3f3f3f3f;
const int MOD = 1e4 + 7;
double dp[1 << maxn];
double p[maxn];
int main(){
int n;
while(~scanf("%d", &n)){
// for(int i = 0; i < (1 << n); i++) dp[i] = 0;
for(int i = 0; i < n; i++){
scanf("%lf", &p[i]);
}
dp[(1 << n) - 1] = 0;
for(int i = (1 << n) - 2; i >= 0; i--){
double sump = 0, sumpe = 0;
for(int j = 0; j < n; j++){
if(!(i & (1 << j))){
sump += p[j];
sumpe += p[j] * dp[i | (1 << j)];
}
}
dp[i] = (sumpe + 1) / sump;
}
printf("%.6f\n", dp[0]);
}
return 0;
}

HDU 4336 Card Collector(状压 + 概率DP 期望)题解的更多相关文章

  1. hdu 4336 Card Collector(状压dp/Min-Max反演)

    传送门 解题思路 第一种方法是状压\(dp\),设\(f(S)\)为状态\(S\)到取完的期望步数,那么\(f(S)\)可以被自己转移到,还可以被\(f(S|(1<<i))\)转移到,\( ...

  2. HDU 4336 Card Collector(动态规划-概率DP)

    Card Collector Problem Description In your childhood, do you crazy for collecting the beautiful card ...

  3. [HDU 4336] Card Collector (状态压缩概率dp)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4336 题目大意:有n种卡片,需要吃零食收集,打开零食,出现第i种卡片的概率是p[i],也有可能不出现卡 ...

  4. HDU 4336 Card Collector 期望dp+状压

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4336 Card Collector Time Limit: 2000/1000 MS (Java/O ...

  5. HDU 4336——Card Collector——————【概率dp】

    Card Collector Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  6. $HDU$ 4336 $Card\ Collector$ 概率$dp$/$Min-Max$容斥

    正解:期望 解题报告: 传送门! 先放下题意,,,已知有总共有$n$张卡片,每次有$p_i$的概率抽到第$i$张卡,求买所有卡的期望次数 $umm$看到期望自然而然想$dp$? 再一看,哇,$n\le ...

  7. hdu 4336 Card Collector (概率dp+位运算 求期望)

    题目链接 Card Collector Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe ...

  8. HDU 4336 Card Collector:期望dp + 状压

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4336 题意: 一共有n种卡片.每买一袋零食,有可能赠送一张卡片,也可能没有. 每一种卡片赠送的概率为p ...

  9. HDU 4336 Card Collector:状压 + 期望dp

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4336 题意: 有n种卡片(n <= 20). 对于每一包方便面,里面有卡片i的概率为p[i],可 ...

随机推荐

  1. On-the-fly Garbage Collection: an Exercise in Cooperation

    On-the-fly Garbage Collection: an Exercise in Cooperation - Microsoft Research https://www.microsoft ...

  2. centralized collectors 中心化 采集器

    Fluent Bit https://fluentbit.io/ FluentBit is an open source specialized data collector. It provides ...

  3. Page not found (404) 不被Django的exception中间件捕捉 中间件

    Using the URLconf defined in config.urls, Django tried these URL patterns, in this order:

  4. 编写Hello World ts程序

    准备工作 预装软件NodeJs和VSCode 新建文件夹ts_in_action npm命令初始化工程:npm init -y,生成package.json文件 全局安装TypeScript:npm ...

  5. 动态库与静态库的学习 博主写的很好 静态库 编译的时候 需要加上 static 动态库编译ok运行不成功就按照文章中的方法修改

    来源连接   http://www.cnblogs.com/skynet/p/3372855.html C++静态库与动态库 这次分享的宗旨是--让大家学会创建与使用静态库.动态库,知道静态库与动态库 ...

  6. 快速计算C(n,r)

    在网上见的,引用出处为:http://blog.csdn.net/alexingcool/article/details/7997599 可以在logn内计算出,但是容易溢出. [cpp] view ...

  7. ThinkPHP3.2.4 order方法注入

    漏洞详情: 漏洞文件:./ThinkPHP\Library\Think\Db\Driver.class.php 中的 parseOrder方法: 这也是继上次order方法注入之后的修复手段. 可以看 ...

  8. GeoMesa Spark

    GeoMesa Spark 一.Spark JTS 1.1 示例 1.2配置 1.3 地理空间用户定义的类型和功能 1.4 geojson输出 1.5 Building 二.Spark Core 2. ...

  9. Microsoft Exchange远程代码执行漏洞(CVE-2020-16875)

    Microsoft Exchange远程代码执行漏洞(CVE-2020-16875) 漏洞信息: 由于对cmdlet参数的验证不正确,Microsoft Exchange服务器中存在一个远程执行代码漏 ...

  10. MyEclipse配置maven以及项目jar包更改

    将压缩包解压,路径中不要包含中文,我解压的路径是D:\JAVA\apache-maven-3.0.5 新建环境变量M2_HOME 指向D:\JAVA\apache-maven-3.0.5 在path中 ...