题意:

求\(x^2 \equiv a \mod p\) 的所有整数解

思路:

二次剩余定理求解。

参考:

二次剩余Cipolla's algorithm学习笔记

板子:

//二次剩余,p是奇质数
ll ppow(ll a, ll b, ll mod){
ll ret = 1;
a = a % mod;
while(b){
if(b & 1) ret = ret * a % mod;
a = a * a % mod;
b >>= 1;
}
return ret;
}
struct TT{
ll p, d;
};
ll w;
TT mul_er(TT a, TT b, ll mod){
TT ans;
ans.p = (a.p * b.p % mod + a.d * b.d % mod * w % mod) % mod;
ans.d = (a.p * b.d % mod + a.d * b.p % mod) % mod;
return ans;
}
TT power(TT a, ll b, ll mod){
TT ret;
ret.p = 1, ret.d = 0;
while(b){
if(b & 1) ret = mul_er(ret, a, mod);
a = mul_er(a, a, mod);
b >>= 1;
}
return ret;
}
ll legendre(ll a, ll p){
return ppow(a, (p - 1) >> 1, p);
}
ll modulo(ll a, ll mod){
a %= mod;
if(a < 0) a += mod;
return a;
}
ll solve(ll n, ll p){ //x^2 = n mod p
if(n == 0) return 0;
if(n == 1) return 1;
if(p == 2) return 1;
if(legendre(n, p) + 1 == p) return -1; //无解
ll a = -1, t;
while(true){
a = rand() % p;
t = a * a - n;
w = modulo(t, p);
if(legendre(w, p) + 1 == p) break;
}
TT temp;
temp.p = a;
temp.d = 1;
TT ans = power(temp, (p + 1) >> 1, p);
return ans.p;
}

代码:

#include<map>
#include<set>
#include<queue>
#include<stack>
#include<ctime>
#include<cmath>
#include<cstdio>
#include<string>
#include<vector>
#include<cstring>
#include<sstream>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int maxn = 5e4 + 5;
const int INF = 0x3f3f3f3f;
const ull seed = 131;
const ll MOD = 1e9 + 7;
using namespace std; //二次剩余
ll ppow(ll a, ll b, ll mod){
ll ret = 1;
a = a % mod;
while(b){
if(b & 1) ret = ret * a % mod;
a = a * a % mod;
b >>= 1;
}
return ret;
}
struct TT{
ll p, d;
};
ll w;
TT mul_er(TT a, TT b, ll mod){
TT ans;
ans.p = (a.p * b.p % mod + a.d * b.d % mod * w % mod) % mod;
ans.d = (a.p * b.d % mod + a.d * b.p % mod) % mod;
return ans;
}
TT power(TT a, ll b, ll mod){
TT ret;
ret.p = 1, ret.d = 0;
while(b){
if(b & 1) ret = mul_er(ret, a, mod);
a = mul_er(a, a, mod);
b >>= 1;
}
return ret;
}
ll legendre(ll a, ll p){
return ppow(a, (p - 1) >> 1, p);
}
ll modulo(ll a, ll mod){
a %= mod;
if(a < 0) a += mod;
return a;
}
ll solve(ll n, ll p){ //x^2 = n mod p
if(n == 0) return 0;
if(n == 1) return 1;
if(p == 2) return 1;
if(legendre(n, p) + 1 == p) return -1; //无解
ll a = -1, t;
while(true){
a = rand() % p;
t = a * a - n;
w = modulo(t, p);
if(legendre(w, p) + 1 == p) break;
}
TT temp;
temp.p = a;
temp.d = 1;
TT ans = power(temp, (p + 1) >> 1, p);
return ans.p;
} int main(){
int T;
scanf("%d", &T);
while(T--){
ll a, n;
scanf("%lld%lld", &a, &n);
ll ans1 = solve(a, n), ans2;
if(ans1 == -1){
printf("No root\n");
continue;
}
ans2 = n - ans1;
if(ans1 > ans2) swap(ans1, ans2);
if(ans1 == ans2) printf("%lld\n", ans1);
else printf("%lld %lld\n", ans1, ans2);
}
return 0;
}

URAL 1132 Square Root(二次剩余定理)题解的更多相关文章

  1. Timus 1132 Square Root(二次剩余)

    http://acm.timus.ru/problem.aspx?space=1&num=1132 题意: 求 x^2 ≡ n mod p  p是质数 的 解 本题中n>=1 特判p=2 ...

  2. Timus 1132 Square Root(二次剩余 解法2)

    不理解,背板子 #include<cstdio> using namespace std; int Pow(int a,int b,int p) { ; ) ) res=1LL*a*res ...

  3. 牛客多校第九场 && ZOJ3774 The power of Fibonacci(二次剩余定理+斐波那契数列通项/循环节)题解

    题意1.1: 求\(\sum_{i=1}^n Fib^m\mod 1e9+9\),\(n\in[1, 1e9], m\in[1, 1e4]\) 思路1.1 我们首先需要知道斐波那契数列的通项是:\(F ...

  4. Codeforces 715A. Plus and Square Root[数学构造]

    A. Plus and Square Root time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  5. Ural 1001 - Reverse Root

    The problem is so easy, that the authors were lazy to write a statement for it! Input The input stre ...

  6. Codeforces Round #372 (Div. 1) A. Plus and Square Root 数学题

    A. Plus and Square Root 题目连接: http://codeforces.com/contest/715/problem/A Description ZS the Coder i ...

  7. 01背包 URAL 1073 Square Country

    题目传送门 /* 题意:问n最少能是几个数的平方和 01背包:j*j的土地买不买的问题 详细解释:http://www.cnblogs.com/vongang/archive/2011/10/07/2 ...

  8. URAL 1001 Reverse Root(水题?)

    The problem is so easy, that the authors were lazy to write a statement for it! Input The input stre ...

  9. Project Euler 80:Square root digital expansion 平方根数字展开

    Square root digital expansion It is well known that if the square root of a natural number is not an ...

随机推荐

  1. uni-app开发经验分享十: 封装request请求

    http.js //封装requset,uploadFile和downloadFile请求,新增get和post请求方法 let http = { 'setBaseUrl': (url) => ...

  2. 小程序map学习:使用map获取当前位置并显示出来

    在小程序开发的过程中,我碰到过一个做map的需求,在我开发的时候我碰到了一些问题,这里总结出来,给大家一些解决方法. 简易小程序dome下载 代码片段分享: js部分: var amapFile = ...

  3. 转 11 jmeter之图形监控扩展

    11 jmeter之图形监控扩展   Jmeter默认监听器的缺陷 Jmeter默认的监听器在表格.文字方面比较健全,但是在图形监控方面比较逊色,尤其在监控Windows或Linux的系统资源方面.但 ...

  4. 为什么MySQL索引使用B+树

    为什么MySQL索引使用B+树 聚簇索引与非聚簇索引 不同的存储引擎,数据文件和索引文件位置是不同的,但是都是在磁盘上而不是内存上,根据索引文件.数据文件是否放在一起而有了分类: 聚簇索引:数据文件和 ...

  5. Python_ 1生成器(上)初识生成器

    引言:列表生成式 现在有个需求,给定列表[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],现在要求你把列表里的每个值加1,你怎么实现?你可能会想到2种方式 1 >>> a ...

  6. Salt (cryptography)

    Salt (cryptography) Here is an incomplete example of a salt value for storing passwords. This first ...

  7. 配置《Orange's一个操作系统的实现》环境心得

    <Orange>这本书开篇第一章就做了一个实例,编写了一段引导扇区的代码,但是引导介质仍然采用了已被淘汰多年的软盘.在经历了两天的痛苦查找后终于找到了最方便的解决办法,在此做一下记录,希望 ...

  8. 关于js中each()使用return不能终止循环

    Jquery的each里面用return false代替break:return ture代替continue $(xx).each(function() { if(xx){ return false ...

  9. 你真的知道为什么要使用void(0)代替undefined吗?

    我们平时用到的\(\color{#FF3030}{undefined}\)只是\(\color{#FF3030}{window}\)对象下的一个属性. Object.getOwnPropertyDes ...

  10. EasyExcel导出小结:动态标题、标题格式、相同值合并

    1. 实列相关依赖 <dependency> <groupId>com.alibaba</groupId> <artifactId>easyexcel& ...