题意:

求\(x^2 \equiv a \mod p\) 的所有整数解

思路:

二次剩余定理求解。

参考:

二次剩余Cipolla's algorithm学习笔记

板子:

//二次剩余,p是奇质数
ll ppow(ll a, ll b, ll mod){
ll ret = 1;
a = a % mod;
while(b){
if(b & 1) ret = ret * a % mod;
a = a * a % mod;
b >>= 1;
}
return ret;
}
struct TT{
ll p, d;
};
ll w;
TT mul_er(TT a, TT b, ll mod){
TT ans;
ans.p = (a.p * b.p % mod + a.d * b.d % mod * w % mod) % mod;
ans.d = (a.p * b.d % mod + a.d * b.p % mod) % mod;
return ans;
}
TT power(TT a, ll b, ll mod){
TT ret;
ret.p = 1, ret.d = 0;
while(b){
if(b & 1) ret = mul_er(ret, a, mod);
a = mul_er(a, a, mod);
b >>= 1;
}
return ret;
}
ll legendre(ll a, ll p){
return ppow(a, (p - 1) >> 1, p);
}
ll modulo(ll a, ll mod){
a %= mod;
if(a < 0) a += mod;
return a;
}
ll solve(ll n, ll p){ //x^2 = n mod p
if(n == 0) return 0;
if(n == 1) return 1;
if(p == 2) return 1;
if(legendre(n, p) + 1 == p) return -1; //无解
ll a = -1, t;
while(true){
a = rand() % p;
t = a * a - n;
w = modulo(t, p);
if(legendre(w, p) + 1 == p) break;
}
TT temp;
temp.p = a;
temp.d = 1;
TT ans = power(temp, (p + 1) >> 1, p);
return ans.p;
}

代码:

#include<map>
#include<set>
#include<queue>
#include<stack>
#include<ctime>
#include<cmath>
#include<cstdio>
#include<string>
#include<vector>
#include<cstring>
#include<sstream>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int maxn = 5e4 + 5;
const int INF = 0x3f3f3f3f;
const ull seed = 131;
const ll MOD = 1e9 + 7;
using namespace std; //二次剩余
ll ppow(ll a, ll b, ll mod){
ll ret = 1;
a = a % mod;
while(b){
if(b & 1) ret = ret * a % mod;
a = a * a % mod;
b >>= 1;
}
return ret;
}
struct TT{
ll p, d;
};
ll w;
TT mul_er(TT a, TT b, ll mod){
TT ans;
ans.p = (a.p * b.p % mod + a.d * b.d % mod * w % mod) % mod;
ans.d = (a.p * b.d % mod + a.d * b.p % mod) % mod;
return ans;
}
TT power(TT a, ll b, ll mod){
TT ret;
ret.p = 1, ret.d = 0;
while(b){
if(b & 1) ret = mul_er(ret, a, mod);
a = mul_er(a, a, mod);
b >>= 1;
}
return ret;
}
ll legendre(ll a, ll p){
return ppow(a, (p - 1) >> 1, p);
}
ll modulo(ll a, ll mod){
a %= mod;
if(a < 0) a += mod;
return a;
}
ll solve(ll n, ll p){ //x^2 = n mod p
if(n == 0) return 0;
if(n == 1) return 1;
if(p == 2) return 1;
if(legendre(n, p) + 1 == p) return -1; //无解
ll a = -1, t;
while(true){
a = rand() % p;
t = a * a - n;
w = modulo(t, p);
if(legendre(w, p) + 1 == p) break;
}
TT temp;
temp.p = a;
temp.d = 1;
TT ans = power(temp, (p + 1) >> 1, p);
return ans.p;
} int main(){
int T;
scanf("%d", &T);
while(T--){
ll a, n;
scanf("%lld%lld", &a, &n);
ll ans1 = solve(a, n), ans2;
if(ans1 == -1){
printf("No root\n");
continue;
}
ans2 = n - ans1;
if(ans1 > ans2) swap(ans1, ans2);
if(ans1 == ans2) printf("%lld\n", ans1);
else printf("%lld %lld\n", ans1, ans2);
}
return 0;
}

URAL 1132 Square Root(二次剩余定理)题解的更多相关文章

  1. Timus 1132 Square Root(二次剩余)

    http://acm.timus.ru/problem.aspx?space=1&num=1132 题意: 求 x^2 ≡ n mod p  p是质数 的 解 本题中n>=1 特判p=2 ...

  2. Timus 1132 Square Root(二次剩余 解法2)

    不理解,背板子 #include<cstdio> using namespace std; int Pow(int a,int b,int p) { ; ) ) res=1LL*a*res ...

  3. 牛客多校第九场 && ZOJ3774 The power of Fibonacci(二次剩余定理+斐波那契数列通项/循环节)题解

    题意1.1: 求\(\sum_{i=1}^n Fib^m\mod 1e9+9\),\(n\in[1, 1e9], m\in[1, 1e4]\) 思路1.1 我们首先需要知道斐波那契数列的通项是:\(F ...

  4. Codeforces 715A. Plus and Square Root[数学构造]

    A. Plus and Square Root time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  5. Ural 1001 - Reverse Root

    The problem is so easy, that the authors were lazy to write a statement for it! Input The input stre ...

  6. Codeforces Round #372 (Div. 1) A. Plus and Square Root 数学题

    A. Plus and Square Root 题目连接: http://codeforces.com/contest/715/problem/A Description ZS the Coder i ...

  7. 01背包 URAL 1073 Square Country

    题目传送门 /* 题意:问n最少能是几个数的平方和 01背包:j*j的土地买不买的问题 详细解释:http://www.cnblogs.com/vongang/archive/2011/10/07/2 ...

  8. URAL 1001 Reverse Root(水题?)

    The problem is so easy, that the authors were lazy to write a statement for it! Input The input stre ...

  9. Project Euler 80:Square root digital expansion 平方根数字展开

    Square root digital expansion It is well known that if the square root of a natural number is not an ...

随机推荐

  1. 01-CentOS 8.1安装 Docker

    官方参考地址:https://docs.docker.com/install/linux/docker-ce/centos/ 里面包含包下载地址:https://download.docker.com ...

  2. 干电池升压5V,功耗10uA

    PW5100干电池升压5V芯片 输出电容: 所以为了减小输出的纹波,需要比较大的输出电容值.但是输出电容过大,就会使得系统的 反应时间过慢,成本也会增加.所以建议使用一个 22uF 的电容,或者两个 ...

  3. 前端知识(二)04-vue-element-admin-谷粒学院

    目录 一.vue-element-admin 1.简介 2.安装 二.vue-admin-template 1.简介 2.安装 一.vue-element-admin 1.简介 vue-element ...

  4. :setting:`task_soft_time_limit` celery 异步任务 执行时间限制 内存限制

    https://docs.celeryproject.org/en/stable/userguide/configuration.html?highlight=control_exchange#new ...

  5. 004_C++常见错误类型总结(一)之最后几行错误

    1.介绍 经常进行代码测试和静态代码分析的同学,应该会遇到这样的一个问题,就是一个程序段的最后几行,或者一个源文件末尾会出现错误.本文,结合专业的静态代码分析软件PSV-Studio提供错误类型代码库 ...

  6. 哈希索引和Btree索引的比较

    索引是帮助mysql获取数据的数据结构.最常见的索引是Btree索引和Hash索引. 不同的引擎对于索引有不同的支持:Innodb和MyISAM默认的索引是Btree索引:而Mermory默认的索引是 ...

  7. java线程缓存刷新的疑问

    https://www.jianshu.com/p/3c06ffbf0d52 import java.util.concurrent.TimeUnit; public class VolatileFo ...

  8. Docker (一、dockerfile-node.js)

    1.基本说明 Dockfile是一个用于编写docker镜像生成过程的文件,其有特定的语法.在一个文件夹中,如果有一个名字为Dockfile的文件,其内容满足语法要求,在这个文件夹路径下执行命令:do ...

  9. snmp协议 及snmpwalk

    推荐阅读: snmp及工具:https://www.jianshu.com/p/dc2dc0222940 snmp协议详解:https://blog.csdn.net/shanzhizi/articl ...

  10. cassandra权威指南读书笔记--Cassandra架构(2)

    环和令牌cassandra的数据管理是用一个环来表示.为环中的每个节点分配一or多个数据范围,用token描述.token由64位整数ID表示,范围-2^(63)~2^(63)-1.使用对分区键进行一 ...